
Problem Set 7
CS 373: Theory of Computation

Assigned: November 8, 2012 Due on: November 15, 2012

Instructions: This homework has 2 problems that can be solved in groups of size at most 3. Please follow
the homework guidelines given on the class website; submitions not following these guidelines will not be
graded.

Recommended Reading: Lectures 18 through 20. You may find it particularly useful to look at Lecture
20 proof of theorem 1 (pages 3 to 6) to see how you may describe a large Turing machine clearly.

Problem 1. [Category: Comprehension+Design+Proof] A queue automaton is like a pushdown automaton
except that the stack is replaced by a queue, i.e., when a symbol is enqueued onto the queue, it is written at
the left-end of the queue, and when a symbol is dequeued from the queue it is removed from the right-end
of the queue. Like a PDA, in each step, depending on the current control state, the current input symbol
read (which could be ε meaning nothing is read from the input), and the symbol dequeued from the queue
(which could be ε, meaning that no symbol is dequeued), the control state at the next time instant and the
symbol to be enqueued (which could be ε meaning that no symbol is enqueued) is determined. Additionally,
like a PDA, the queue machine accepts an input if it reaches an accepting/final state after reading the entire
input, irrespective of the contents of its queue.

1. Give the formal definition of a queue machine as a tuple, giving the domain and range of the transition
function. [2 points]

2. Give the formal definitions of the instantaneous description of the queue machine, computation on a
word, and the language accepted by the machine. [3 points]

3. Prove that if M is a (deterministic, single-tape) Turing machine then there is a queue machine P such
that L(P ) = L(M). [10 points]

Aside: Queue automata arise naturally as models of distributed computing environments. Imagine a
distributed systems where agents communicate with each other by sending and receiving messages over
channels, and the channels themselves buffer the messages to ensure that message sends are non-blocking,
and that messages are delivered in the order in which they were sent. If each agent in the distributed system
has only finite memory, then the entire system can be modelled as a queue automata (with many queues),
where the control state of the automaton is the cross-product of the state of each agent, and there is a
queue associated with each communication channel which is the message buffer for that channel. What this
problem says is that such a distributed system can “compute” anything that a general purpose computer
can, even if each agent is a device with very limited computing ability (like is a finite automaton).

Problem 2. [Category: Comprehension+Design+Proof] Consider a variation of Turing machines: No-
InpuT-WrIte-Turing machine (abbreviated as NITWIT). NITWIT is a deterministic TM with a single two-
way infinite tape (i.e., there is no leftmost cell on the tape) with the restriction that it is not allowed to write
on the input portion of the tape. Note that the machine is allowed to write anything it pleases outside the
portion of the tape where the input is written. Additionally, a NITWIT machine enters the accept state qacc
or the reject state qrej only when the head is within the input portion of the tape. In this problem, we will

1



show that, as their name suggests, NITWIT machines are not as clever as Turing machines, and can only
(surprise!) recognize regular languages.

Formal Definition of NITWIT: A NITWIT machine is not allowed to write on the input portion of the
tape. So the machine will keep track (in its finite control) whether it is within the input portion of the tape
or outside the input portion of the tape — within the input portion, it must write the same symbol it reads
in each step, whereas outside the input portion it can write anything it chooses. Finally, we will assume that
there is left-end-marker (B) and a right-end-marker (C) that mark the beginning and end of input portion
of the tape; the machine is never allowed to write these symbols anywhere else on the tape. Formally, a
NITWIT machine M = (Q,Σ,Γ, δ, q0, qacc, qrej) where

• Q = Qin ∪Qout is a finite set of states, where Qin ∩Qout = ∅. The machine will be in a Qin state when
the tape head is in the input portion of the tape, and is in state Qout when the tape head is outside
the input portion of the tape.

• Σ is the (finite) input alphabet containing two special symbols: B, the left-end-marker, and C, the
right-end-marker. The input is assumed to be a string of the form BwC where w ∈ (Σ \ {B,C})∗, i.e.,
w does not contain the symbols B and C.

• Γ ⊇ Σ is the tape alphabet with t ∈ Γ \ Σ

• q0 ∈ Q is the initial state.

• qacc ∈ Qin is the unique accept state. Since the machine accepts only when the head is within the input
portion, qacc must be in Qin.

• qrej ∈ Qin is the unique reject state; again, qrej must be in Qin because the machine rejects only when
the tape head is within the input.

• Finally δ : (Q× Γ)→ (Q× Γ× {L,R}) with the following restrictions.

– When the machine is not scanning the end markers and the head is within the input then at
the next step it remains within the input and it must write the same symbol. Formally, if
δ(q1, a) = (q2, b,D) with q1 ∈ Qin and a ∈ Γ \ {B,C} then q2 ∈ Qin and b = a.

– When the machine is scanning the left-end-marker, and it moves right then it moves within the
input. Formally, if δ(q1,B) = (q2, b,R) then b = B and q2 ∈ Qin.

– When the machine is scanning the left-end-marker, and it moves left then it moves outside the
input. That is, if δ(q1,B) = (q2, b, L) then b = B and q2 ∈ Qout.

– When the machine is scanning the right-end-marker, and it moves left then it moves within the
input. Formally, if δ(q1,C) = (q2, b, L) then b = C and q2 ∈ Qin.

– When the machine is scanning the right-end-marker, and it moves right then it moves outside the
input. That is, if δ(q1,C) = (q2, b,R) then b = C and q2 ∈ Qout.

– Finally, if the head is outside the input portion then it remains outside the input in the next
step. That is, if δ(q1, a) = (q2, b,D) with q1 ∈ Qout and a ∈ Γ \ {B,C} then q2 ∈ Qout and
b ∈ Γ \ {B,C}.

Notice, when the machine is scanning the left-end-marker or right-end-marker, it could be in a state
of Qin or Qout depending on whether it came from within the input or from outside the input.

Since NITWIT machines are special forms of Turing machines, definitions of configurations, one step, accep-
tance, and language recognized are exactly the same as those for Turing machines. The initial configuration
of the machine on input w ∈ (Σ \ {B,C})∗ is q0 B wC.

2



Computations of NITWIT: A computation of a NITWIT machine takes the following form: the machine
enters the input portion of the tape from the left or the right end (initially it enters from the left end),
executes a sequence of steps where the head is within the input portion, then reaches one of the end markers
(or may never reach an end-marker if it goes into an infinite loop), then it executes a sequence of steps when
the head is outside (this could be 0 steps or infinite, if the machine goes into an infinite loop), and then
re-enters the input portion, and repeats this until it halts. Thus, a computation of NITWIT can be broken
into “phases” where the machine “enters” the input portion of the tape from one of the end markers, and
then “leaves” when it moves to one of the end-markers from within the input portion. Notice that during
such a phase, the behavior of the machine only depends on the input (as the portion outside the input is not
read) and the tape contents don’t change. So to describe the effect of such a phase we don’t need to consider
the tape. We will define the following function to describe these phases. Let us fix a NITWIT machine M .
For an input w ∈ Σ∗, let us define a function fw : Q× {B,C} → ((Q× {B,C}) ∪ {A,R,∞}). For q, q′ ∈ Q,
E,E′ ∈ {B,C}, define fw(q, E) to be equal to

• (q′, E′) if when M enters in state q from E, it leaves the input portion from in state q′ at end-marker
E′; note that if E = B and δ(q,B) = (q1,B, L), or if E = C and δ(q,C) = (q1,C,R), then we take
fw(q, E) = (q, E),

• A if M accepts within w (when M enters input w in state q at end-marker E)

• R if M rejects within w (when M enters input w in state q at end-marker E), and

• ∞ is M goes into an infinite loop and stays within the input, when M enters w in state q at end-marker
E.

We now study the properties of the functions fw defined above.

1. How many different functions fw are there? In other words, what is the size of the set {fw | w ∈ Σ∗}.
[2 points]

2. Prove that if fw1 = fw2
1 then w1 ∈ L(M) implies w2 ∈ L(M). Notice that since the condition is

symmetric on w1, w2, proving this shows that if fw1 = fw2 then w1 ∈ L(M) iff w2 ∈ L(M). Hint: You
may want to prove this by induction on the number of times the computation of M on w1 enters/leaves
the input portion. [5 points]

3. Prove that if fw1
= fw2

then for all w ∈ Σ∗, fw1w = fw2w. [5 points]

4. Recall the equivalence ≡L(M) on strings defined as u ≡L(M) v when for all w ∈ Σ∗, uw ∈ L(M) iff
vw ∈ L(M). Recall also the Myhill-Nerode theorem which says that L(M) is regular iff ≡L(M) has
finitely many equivalene classes. Using the previous parts of this problem, prove that L(M) is regular.
[3 points]

1Two functions f, g : X → Y are said to be equal, if for each x ∈ X, f(x) = g(x).

3


