Problem Set 5 CS 373: Theory of Computation

Assigned: October 11, 2012 Due on: October 18, 2012

Instructions: This homework has 3 problems that can be solved in groups of size at most 3. Please follow the homework guidelines given on the class website; submitions not following these guidelines will not be graded.

Recommended Reading: Lectures 11 and 12.
Problem 1. [Category: Comprehension+Design] Let $L=\mathbf{L}\left(1^{*} 0(00 \cup 01 \cup 1)(0 \cup 1)^{*}\right)$.

1. List all the equivalence classes of \equiv_{L}. Prove that your answer is correct.
2. Draw the minimum state DFA M^{L} accepting L.

Problem 2. [Category: Comprehension] Consider the following grammar over the terminals $\{0, \#\}$ and start symbol S.

$$
\begin{aligned}
& S \rightarrow T T \mid U \\
& T \rightarrow 0 T|T 0| \# \\
& U \rightarrow 0 U 00 \mid \#
\end{aligned}
$$

1. For each of the following strings, answer whether or not they belong to the language defined by the grammar: $00 \# 0 \# 00,0 \# 0,000 \# 000000$. If they do, give a derivation and parse tree for the string. If not, provide a short, informal justification for why the string cannot be generated.
2. What is the language of the grammar? You need not prove your answer, but you should provide a short informal justification for your answer.
3. Is the language of the grammar regular? Prove your answer.

Problem 3. [Category: Design+Proof] Design a context-free grammar for the language $L=\left\{a^{i} b^{j} \mid 2 i \leq\right.$ $j \leq 3 i, i, j \in \mathbb{N}\}$. Provide a formal proof that your construction is correct. Hint: Build a grammar for the case when $j=2 i$ and $j=3 i$, and think of a way to fuse the two together.
[10 points]

