Problem Set 4
 CS 373: Theory of Computation

Assigned: September 20, 2012 Due on: September 27, 2012

Instructions: This homework has 3 problems that can be solved in groups of size at most 3. Please follow the homework guidelines given on the class website; submitions not following these guidelines will not be graded.

Recommended Reading: Lectures 7 and 8.
Problem 1. [Category: Proof] Let $N_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ be an NFA recognizing language L. Recall that in lecture 7 we gave the following construction of an NFA recognizing L^{*} : Take $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ where

- $Q=Q_{1} \cup\left\{q_{0}\right\}$, where $q_{0} \notin Q_{1}$
- $F=F_{1} \cup\left\{q_{0}\right\}$
- δ is defined as follows

$$
\delta(q, a)= \begin{cases}\delta_{1}(q, a) & \text { if } q \in\left(Q_{1} \backslash F_{1}\right) \text { or } a \neq \epsilon \\ \delta_{1}(q, a) \cup\left\{q_{1}\right\} & \text { if } q \in F_{1} \text { and } a=\epsilon \\ \left\{q_{1}\right\} & \text { if } q=q_{0} \text { and } a=\epsilon \\ \emptyset & \text { otherwise }\end{cases}
$$

Prove that N does indeed recognize L^{*}, i.e., $\mathbf{L}(N)=\left(\mathbf{L}\left(N_{1}\right)\right)^{*}=L^{*}$.
Problem 2. [Category: Proof] Let $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ and $M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$ be DFAs recognizing L_{1} and L_{2}, respectively. Recall that in lecture 8, we gave the following construction of a DFA recognizing the intersection of L_{1} and $L_{2}: M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ defined as follows

- $Q=Q_{1} \times Q_{2}$
- $q_{0}=\left\langle q_{1}, q_{2}\right\rangle$
- $\delta\left(\left\langle p_{1}, p_{2}\right\rangle, a\right)=\left\langle\delta_{1}\left(p_{1}, a\right), \delta_{2}\left(p_{2}, a\right)\right\rangle$
- $F=F_{1} \times F_{2}$

Prove that $\mathbf{L}(M)=\mathbf{L}\left(M_{1}\right) \cap \mathbf{L}\left(M_{2}\right)$.
[10 points]
Problem 3. [Category: Comprehension + Design] For languages A and B (over alphabet Σ), let $\operatorname{PerfectShuffle}(A, B)$ be the language
$\left\{w \in \Sigma^{*} \mid w=a_{1} b_{1} a_{2} b_{2} \cdots a_{n} b_{n}\right.$, where, for each $i, a_{i}, b_{i} \in \Sigma$ and $a_{1} a_{2} \cdots a_{n} \in A$ and $\left.b_{1} b_{2} \cdots b_{n} \in B\right\}$

1. Let $\Sigma=\{0,1\}$. Let $A=\mathbf{L}\left(0^{*}\right)$ and $B=\mathbf{L}\left(1^{*}\right)$. What is $\operatorname{PerfectShuffle}(A, B)$?
2. Let $\Sigma=\{0\}$. Let $C=\left\{w \in \Sigma^{*}| | w \mid\right.$ is even $\}$ and $D=\left\{w \in \Sigma^{*}| | w \mid\right.$ is prime $\}$. What is PerfectShuffle (C, D) ?
[1 points]
3. Prove that regular languages are closed under the perfect shuffle operator, i.e., if A and B are regular then PerfectShuffle (A, B) is regular. If you prove regularity of $\operatorname{PerfectShuffle~}(A, B)$ by constructing a DFA/NFA/regular expression then you need not prove the correctness of your construction; you should, however, clearly explain the intuition behind your constrauction.
[8 points].
