Problem Set 2

CS 373: Theory of Computation

Assigned: September 6, 2012 Due on: September 13, 2012

Instructions: This homework has 3 problems that can be solved in groups of size at most 3. Please follow the homework guidelines given on the class website; submitions not following these guidelines will not be graded.

Recommended Reading: Lectures 3 and 4.
Problem 1. [Category: Design+Proof] Let

$$
\Sigma_{2}=\left\{\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\}
$$

Σ_{2} contains all size 2 columns of 0 s and 1s. A string of symbols in Σ_{2} gives 2 rows of 0 s and 1 s . Consider each row to be a binary number, where the first symbol is the least significant bit of each binary number. For example, the string

$$
\left[\begin{array}{l}
1 \\
1
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]\left[\begin{array}{l}
0 \\
0
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

represents $0011=3$ (first row) and $1001=9$ (third row). Let

$$
C=\left\{w \in \Sigma_{2}^{*} \mid \text { the bottom row of } w \text { is } 3 \text { times the top row }\right\}
$$

For example,

$$
\left[\begin{array}{l}
1 \\
1
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]\left[\begin{array}{l}
0 \\
0
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right] \in C \quad \text { but } \quad\left[\begin{array}{l}
1 \\
0
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right] \notin C
$$

1. Design a DFA that recognizes C.
2. Prove that your construction is correct.

Problem 2. [Category: Proof] Consider the language $L=\left\{w \in\{0\}^{*}| | w \mid \bmod 3=0\right\}$ over the unary alphabet $\{0\}$. Prove that any DFA that recognizes L must have at least 3 states.
[10 points]
Problem 3. [Category: Comprehension] Consider the following NFA M_{0} over the alphabet $\{0,1\}$.

Figure 1: NFA M_{0} for Problem 3

1. Describe formally what the following are for automaton M_{0} : set of states, initial state, final states, and transition function.
2. What are $\hat{\delta}_{M_{0}}(A, 010), \hat{\delta}_{M_{0}}(A, 101), \hat{\delta}_{M_{0}}(A, 1101)$, and $\hat{\delta}_{M_{0}}(B, 10)$?
3. What is $\mathbf{L}\left(M_{0}\right)$? You don't have to prove your answer.
[2 points]
