Problem Set 1
 CS 373: Theory of Computation

Assigned: August 30, 2012 Due on: September 6, 2012

Instructions: This homework has 3 problems that can be solved in groups of size at most 3. Please follow the homework guidelines given on the class website; submitions not following these guidelines will not be graded.

Recommended Reading: Lectures 1 and 2.
Problem 1. [Category: Comprehension + Proof]

1. Let $A=\{1,2,3\}, B=\{\emptyset,\{1\},\{2\}\}$, and $C=\{1,2,\{1,2\}\}$. Compute $A \cup B, A \cap B, B \cap C, A \cap C$, $A \times B, A \times C, C \backslash A, C \backslash B, A \times B \times C$, and 2^{B}. Recall that 2^{A} denotes the power set of A, and $A \backslash B$ denotes A set difference B.
2. Prove for any sets A, B, and $C, A \times(B \cup C)=(A \times B) \cup(A \times C)$.

Problem 2. [Category: Comprehension] Consider the following DFA M_{0} over the alphabet $\{0,1\}$.

Figure 1: DFA M_{0} for Problems 2 and 3

1. Describe formally what the following are for automaton M_{0} : set of states, initial state, final states, and transition function.
2. What are $\hat{\delta}_{M_{0}}(A, \epsilon), \hat{\delta}_{M_{0}}(A, 1011), \hat{\delta}_{M_{0}}(B, 101)$, and $\hat{\delta}_{M_{0}}(C, 10110)$?
3. What is $\mathbf{L}\left(M_{0}\right)$?
4. What is the language recognized if we change the initial state to B ? What is the language recognized if we change the set of final states to be $\{B\}$ (with initial state A)?
[1 points]

Problem 3. [Category: Comprehension] Given a DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ define the following function $\rho: \Sigma^{*} \rightarrow 2^{Q \times Q}$ inductively. (Intuitively, ρ maps a string to a binary relation on states Q.)

$$
\rho(w)= \begin{cases}\{(q, q) \mid q \in Q\} & \text { if } w=\epsilon \\ \left\{\left(q_{1}, q_{2}\right) \mid \text { exists } q^{\prime} \in Q \cdot q_{2}=\delta\left(q^{\prime}, a\right) \text { and }\left(q_{1}, q^{\prime}\right) \in \rho(u)\right\} & \text { if } w=u a\end{cases}
$$

where $u \in \Sigma^{*}$ and $a \in \Sigma$. Answer the following questions about ρ and the DFA M_{0} from problem 2.

1. What is $\rho(\epsilon), \rho(1011), \rho(101)$, and $\rho(10110)$?
2. Give an english/mathematical description of what ρ is for a general DFA.
3. For a DFA M, define $\mathbf{L}^{\prime}(M)=\left\{w \in \Sigma^{*} \mid \exists q \in F .\left(q_{0}, q\right) \in \rho(w)\right\}$. For each of the following answer whether the belong to $\mathbf{L}^{\prime}\left(M_{0}\right): 10110,101 ?$
4. What is $\mathbf{L}^{\prime}\left(M_{0}\right)$?
[2 points]
5. For a general DFA M, what is the relationship between $\mathbf{L}(M)$ and $\mathbf{L}^{\prime}(M)$? (Answer which of the following best describes the relationship: $\mathbf{L}(M)=\mathbf{L}^{\prime}(M), \mathbf{L}(M) \subseteq \mathbf{L}^{\prime}(M)$ or $\mathbf{L}^{\prime}(M) \subseteq \mathbf{L}(M)$.)
[1 points]
