
1 P vs NP

Is P = NP?

Can the collection of problems that have short, efficiently checkable proofs, be the same as the collection of problems for

which you can find short, efficiently checkable proofs, efficiently?

P versus NP

• Are there problems in NP that are not in P?

• If there are, then the most difficult problems in NP must be such problems.

• How do we define “most difficult”?

– Reductions!

1.1 Reductions

Polynomial Time Reductions
Capturing the Relative Difficulty of Problems

Definition 1. A polynomial time reduction from L1 to L2 is a polynomial time computable function
f : Σ∗ → Σ∗ such that

u ∈ L1 iff f(u) ∈ L2

L1 is said to be polynomial time reducible to L2 and is denoted by L1 ≤P L2.

Properties of Reductions

Proposition 2. If L1 ≤P L2 and L2 ≤P L3 then L1 ≤P L3

Proof. If f is a polynomial time reduction from L1 to L2 running in time nk and g is a polynomial
time reduction from L2 to L3 computed in time n` then g ◦ f is a reduction from from L1 to L3

and can be computed in time O(nk + (nk)`) = O(nk`).

Proposition 3. If L1 ≤P L2 and L2 ∈ P then L1 ∈ P.

Proof. Let f be the reduction from L1 to L2 (running in time nk) and let B be a polynomial time
algorithm deciding L2 (in time n`). Then the algorithm for L1 on input w, computes f(w) and
runs B on f(w). The total running time is O(nk + (nk)`) = O(nk`).

1

1.2 Completeness

Completeness
Hardest Problems in a Class

Definition 4. • L is said to be NP-hard iff for every L′ ∈ NP, L′ ≤P L

• L is said to be NP-complete iff L ∈ NP and L is NP-hard

2 Examples

2.1 SAT

Propositional Logic

Formulas in propositional logic are

• built from propositions,

• using ∧ (conjunction), ∨ (disjunction), and ¬ (negation).

Example 5. Examples of formulas are (p ∨ (¬p)), ((p ∧ q) ∨ (¬p) ∨ (¬q)), and ((¬p) ∨ q).

Conjunctive Normal Form Formulas

Definition 6. • A literal is a propositional variable p or its negation ¬p.

• A clause is a disjunction of literals. Example, p ∨ (¬q) ∨ r.

• A formula is said to be in conjunctive normal form (CNF) if it is a conjunction of clauses.
Example, ((p ∨ (¬q)) ∧ ((¬p) ∨ q))

Proposition 7. Every formula in propositional logic is equivalent to a formula in conjunctive
normal form.

Proof. Push all the negations inside using De Morgan laws, and then distribute the disjunctions
over the conjunctions.

Satisfiable Formulas

Definition 8. A formula ϕ is satisfiable if there is a assignment to the propositions such that ϕ
evaluates to true. ϕ is unsatisfiable if it is not satisfiable.

Example 9. (p ∨ (¬q)) ∧ ((¬p) ∨ q) is satisfiable because it evaluates to 1 (true) when p 7→ 1 and
q 7→ 1.

(p ∧ (¬p)) is unsatisfiable.

2

Satisfiability Problem

SAT
SAT = {〈ϕ〉 | ϕ is a conjunctive normal form formula that is satisfiable}

Definition 10. A k-CNF formula is a formula ϕ in conjunctive normal form such that every clause
in ϕ has exactly k literals.

kSAT
kSAT = {〈ϕ〉 | ϕ is a k-CNF formula that is satisfiable}

SAT ∈ NP

Proposition 11. SAT ∈ NP

Proof. SAT is polynomially verifiable. The proof that 〈ϕ〉 ∈ SAT is a satisfying assignment σ.
Observe that |σ| is equal to the number of propositions in ϕ, and given an assignment σ, one can
check in O(|ϕ|) time if ϕ by evaluating each of subformulas starting from the literals.

Another proof would be to give a nondeterministic algorithm. The algorithm guesses a truth
assignment σ, and checks if ϕ evaluates to true under σ. The running time is polynomial because
of reasons listed in the previous paragraph.

Cook-Levin Theorem

Figure 1: Stephen A. Cook

Figure 2: Leonid Levin

Theorem 12 (Cook-Levin). 3SAT is NP-hard.

3

Proof. Not enough time to cover.

Corollary 13. 3SAT is NP-complete.

Corollary 14. SAT is NP-complete.

Proof. We have already established that SAT ∈ NP. We also know (from Cook-Levin Theorem)
that for every L ∈ NP, we have L ≤P 3SAT. It is easy to see that 3SAT ≤P SAT: since 3SAT is
a special case of SAT, the reduction on input ϕ returns ϕ, if ϕ is a 3-CNF formula. Finally, since
reductions compose, we have for every L ∈ NP, L ≤P SAT, and so SAT is NP-hard. Hence, we
have SAT is NP-complete.

Recipe for Proving NP-hardness

To prove that A is NP-hard, we need to show that for every L ∈ NP, L ≤P A.

• Suppose B is NP-hard and B ≤P A.

• Then, since for every L ∈ NP, L ≤P B (NP-hardness of B), and reductions compose, we
have established the NP-hardness of A.

2.2 Independent Set

Independent Set

Definition 15. Given graph G = (V,E), I ⊆ V is an independent set iff for every u, v ∈ I,
(u, v) 6∈ E, i.e., it is subset of vertices no two of which are joined by an edge.

Example 16.

Figure 3: An independent set is shown in red

Independent Set Problem

Definition 17. INDEP = {〈G, k〉 |G is a graph that has an independent set of size at least k}

4

Theorem 18. INDEP is NP-complete.

Proof. First observe that INDEP ∈ NP. The nondeterministic algorithm does the following. If k
is more than the number of vertices in G, it answers “no”. Otherwise, it guesses an independent
set of size k, and checks that no two vertices in the (guessed) set have an edge between them. This
runs in time that is O(|G|).

To prove hardness, we will show that 3SAT ≤P INDEP. That is given a 3-CNF formula ϕ, the
reduction will (in polynomial time) construct a graph Gϕ and number kϕ such that ϕ ∈ 3SAT iff
〈Gϕ, kϕ〉 ∈ INDEP. There are two ways to think about 3SAT

• Find a way to assign 0/1 to the variables such that the formula evaluates to true

• Pick a literal from each clause and find a truth assignment to make all of them true. You will
fail if two of the literals you pick are in conflict, i.e., you pick xi and ¬xi

We will take the second view of 3SAT to construct the reduction.
The informal overview of the reduction is as follows

• Gϕ will have one vertex for each literal in a clause.

• Connect the 3 literals in a clause to form a triangle; the independent set will pick at most
one vertex from each clause, which will correspond to the literal to be set to true

• Connect 2 vertices if they label complementary literals; this ensures that the literals corre-
sponding to the independent set do not have a conflict

• Take kϕ to be the number of clauses

x2 x3

¬x1

x1 x3

¬x2

x2 x4

¬x1

Figure 4: Graph for ϕ = (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x4)

Observe that the reduction can be computed in polynomial time. To establish the correctness
of the reduction we need to show that Gϕ has an independent set of size kϕ iff ϕ is satisfiable.
Suppose I is an independent set of size kϕ (= the number of clauses in ϕ).

• I must contain exactly one vertex from each clause.

• I cannot contain vertices labelled by conflicting clauses.

• Thus, it is possible to obtain a truth assignment that makes in the literals in S true; such an
assignment satisfies one literal in every clause.

On the other hand suppose a is a satisfying truth assignment for ϕ. Then construct I as follows:
pick one vertex, corresponding to true literals under a, from each triangle. I is an independent set
of the appropriate size in Gϕ.

5

2.3 Vertex Cover

Vertex Cover

Definition 19. Given a graph G = (V,E), a vertex cover C ⊆ V is a subset of vertices such that
for every edge e ∈ E at least one of its endpoints is in C.

Example 20.

Figure 5: A vertex cover is shown in red

Vertex Cover and Independent Set

Proposition 21. Let G = (V,E) be a graph. I is an independent set iff V \ I is a vertex cover.

Proof. (⇒) Let I be any independent set

• Consider some edge (u, v) ∈ E

• Since I is an independent set, either u 6∈ I or v 6∈ I

• Thus, either u ∈ V \ I or v ∈ V \ I

• V \ I is a vertex cover

(⇐) Let V \ I be some vertex cover

• Consider u, v ∈ I

• (u, v) is not edge, as otherwise V \ I does not cover (u, v)

• I is thus an independent set

Vertex Cover Problem

Definition 22. VC = {〈G, k〉 |G is a graph that has a vertex cover of size at most k}

Theorem 23. VC is NP-complete.

6

Proof. First observe that VC ∈ NP. The nondeterministic algorithm guesses a vertex cover of size
at most k, and checks that every edge has at least one of its endpoints in the (guessed) set. This
runs in time that is O(|G|).

To prove hardness, we will show that INDEP ≤P VC. Given a graph G with n vertices, the
reduction f on input 〈G, k〉 will return 〈G,n− k〉. This is correct because our earlier observations
show that G has a independent set of size at least k iff G has a vertex cover of size at most n− k.
The reduction clearly can be computed in polynomial time.

Big Picture for the last time

Regular

CFL L0n1n

P Lanbncn

NP

Decidable

Recursively Enumerable
Atm

Languages
Ld, Atm, Etm

7

	P vs NP
	Reductions
	Completeness

	Examples
	SAT
	Independent Set
	Vertex Cover

