1 Nondeterministic Time

1.1 Time Bounded Classes

Time Bounded Nondeterministic Computation

Definition 1. A nondeterministic Turing machine is said to run in time ¢(n) if on any input wu,
every computation of M on u takes at most t(|u|) steps

Definition 2. L € NTIME(¢(n)) iff there is a nondeterministic TM M that runs in time ¢(n) and
L = L(M)

Linear Speedup
Nondeterministic TMs

Theorem 3. Let M be a k-tape nondeterministic TM running in time t(n). For any constant
¢ > 0, there is a k + 1-tape nondeterministic TM M’ such that L(M') = L(M) and M’ runs in
time ct(n) +n. (Note, here we think of ¢ being less than 1.)

Proof. 1t is the same as the proof for deterministic TMs O

Corollary 4. Ifn = o(t(n)) and (nondeterministic) M runs in time t'(n) such that t'(n) = O(t(n))
then L(M) € NTIME(t(n)).

1.2 Relationship with Deterministic Classes

Nondeterministic and Deterministic Classes

Proposition 5. For any t(-), DTIME((t(n)) C NTIME(t(n))
Proof. Follows from the fact that a deterministic TM is special kind of nondeterministic TM. [
Proposition 6. NTIME(t(n)) € DTIME(21™)

Proof. Let M be a nondeterministic TM running in ¢(n) time, and let d be an upper bound on the
number of choices at any step.

e Given a sequence of nondeterministic choices o, a deterministic machine can simulate M on
that sequence.

e On input w, the deterministic machine tries out all sequence of nondeterministic choices of
length upto t(|w|), and simulates M, and checks if M accepts w on any such sequence.

e Total time is 22(2 kd* < d?Hm+2 = o(2tm), 0

2 NP

Nondeterministic Polynomial Time

Definition 7. NP = UyNTIME(n*)
Proposition 8. 1. PC NP
2. NP C J, DTIME(2"") = EXPTIME

Proof. Follows from the observations relating deterministic and nondeterministic classes. O

2.1 Efficiently Verifiable Languages
Polynomially Verifiable Languages

Definition 9. A polynomial time verifier for a language L is a (deterministic) Turing machine V'
such that
L ={w|3p. V accepts (w,c)}

and V on input (w, p) takes at most |w|* steps, for some k.
If L has a polynomial verifier then L is said to be polynomially verifiable.

Remark
Since a polynomial verifier V for L runs in time |w|¥ (for some k) on input (w,p), it must be the
case that [p| < |wl|.

Examples

Ezample 10. Let COMPOSITES = {n € N|3p,q. n = pg and p,q > 1}. COMPOSITES are
polynomially verifiable. The “proof” that m is composite are factors p and ¢ such that n = pq.
Observe that |p|,|q| < |n| (so the proof is polynomially bounded), and the product pg can be
computed in time that is bounded by [p||q].

Ezample 11. A Hamiltonian path in a directed graph G, is a path that visits every vertex (in G)
exactly once. Let

HAMPATH = {(G, s,t)| G is a directed graph that has a
Hamiltonian path from s to t}

HAMPATH is polynomially verifiable. The proof that (G, s,t) € HAMPATH is a Hamiltonian path
7 from s to t. Observe that || is equal to the number of vertices in G, and given a path m, one
can check in linear time if it is Hamiltonian path from s to ¢.

Non-Example (?)

Example 12. HAMPATH which is the complement of HAMPATH may not be polynomially verifi-
able. It seems like the only “proof” that a graph G does not have a Hamiltonian path, would be
to go through all permutations on the vertices of G and check that thet are not valid paths.

Note, the above is just an argument for why HAMPATH may not be polynomially verifiable.
Nobody knows of a precise proof that establishes this fact.

NP and efficient verifiers

Theorem 13. L € NP iff L has an efficient verifier.

Proof. (=) If M recognizes L in time n* then the “proof” for a string w € L is a string p that lists
the sequence of nondeterministic choices that leads M to accept the input w. Thus, the verifier for
L, on input (w, p), simulates M on input w taking the symbols of p as the nondeterministic choices
to be taken at each step. V accepts (w,p) if the simulation of M accepts.

(<) Let V be a verifier for L that runs in n* time. The nondeterministic TM for L will be as
follows

On input w
Nondeterministically pick a string p of length |w|*
Run V on (w,p) and accept only if V does

2.2 P versus NP

[s P = NP?

Can the collection of problems that have short, efficiently checkable proofs, be the same as the collection of problems for

which you can find short, efficiently checkable proofs, efficiently?

	Nondeterministic Time
	Time Bounded Classes
	Relationship with Deterministic Classes

	NP
	Efficiently Verifiable Languages
	P versus NP

