1 Nondeterministic Time

1.1 Time Bounded Classes

Time Bounded Nondeterministic Computation

Definition 1. A nondeterministic Turing machine is said to run in time ¢(n) if on any input wu,
every computation of M on u takes at most t(|u|) steps

Definition 2. L € NTIME(¢(n)) iff there is a nondeterministic TM M that runs in time ¢(n) and
L = L(M)

Linear Speedup
Nondeterministic TMs

Theorem 3. Let M be a k-tape nondeterministic TM running in time t(n). For any constant
¢ > 0, there is a k + 1-tape nondeterministic TM M’ such that L(M') = L(M) and M’ runs in
time ct(n) +n. (Note, here we think of ¢ being less than 1.)

Proof. 1t is the same as the proof for deterministic TMs O

Corollary 4. Ifn = o(t(n)) and (nondeterministic) M runs in time t'(n) such that t'(n) = O(t(n))
then L(M) € NTIME(t(n)).

1.2 Relationship with Deterministic Classes

Nondeterministic and Deterministic Classes

Proposition 5. For any t(-), DTIME((t(n)) C NTIME(t(n))
Proof. Follows from the fact that a deterministic TM is special kind of nondeterministic TM. [
Proposition 6. NTIME(t(n)) € DTIME(21™)

Proof. Let M be a nondeterministic TM running in ¢(n) time, and let d be an upper bound on the
number of choices at any step.

e Given a sequence of nondeterministic choices o, a deterministic machine can simulate M on
that sequence.

e On input w, the deterministic machine tries out all sequence of nondeterministic choices of
length upto t(|w|), and simulates M, and checks if M accepts w on any such sequence.

e Total time is 22(2 kd* < d?Hm+2 = o(2tm), 0




2 NP

Nondeterministic Polynomial Time

Definition 7. NP = UyNTIME(n*)
Proposition 8. 1. PC NP
2. NP C J, DTIME(2"") = EXPTIME

Proof. Follows from the observations relating deterministic and nondeterministic classes. O

2.1 Efficiently Verifiable Languages
Polynomially Verifiable Languages

Definition 9. A polynomial time verifier for a language L is a (deterministic) Turing machine V'
such that
L ={w|3p. V accepts (w,c)}

and V on input (w, p) takes at most |w|* steps, for some k.
If L has a polynomial verifier then L is said to be polynomially verifiable.

Remark
Since a polynomial verifier V for L runs in time |w|¥ (for some k) on input (w,p), it must be the
case that [p| < |wl|.

Examples

Ezample 10. Let COMPOSITES = {n € N|3p,q. n = pg and p,q > 1}. COMPOSITES are
polynomially verifiable. The “proof” that m is composite are factors p and ¢ such that n = pq.
Observe that |p|,|q| < |n| (so the proof is polynomially bounded), and the product pg can be
computed in time that is bounded by [p||q].

Ezample 11. A Hamiltonian path in a directed graph G, is a path that visits every vertex (in G)
exactly once. Let

HAMPATH = {(G, s,t)| G is a directed graph that has a
Hamiltonian path from s to t}

HAMPATH is polynomially verifiable. The proof that (G, s,t) € HAMPATH is a Hamiltonian path
7 from s to t. Observe that || is equal to the number of vertices in G, and given a path m, one
can check in linear time if it is Hamiltonian path from s to ¢.

Non-Example (?)



Example 12. HAMPATH which is the complement of HAMPATH may not be polynomially verifi-
able. It seems like the only “proof” that a graph G does not have a Hamiltonian path, would be
to go through all permutations on the vertices of G and check that thet are not valid paths.

Note, the above is just an argument for why HAMPATH may not be polynomially verifiable.
Nobody knows of a precise proof that establishes this fact.

NP and efficient verifiers

Theorem 13. L € NP iff L has an efficient verifier.

Proof. (=) If M recognizes L in time n* then the “proof” for a string w € L is a string p that lists
the sequence of nondeterministic choices that leads M to accept the input w. Thus, the verifier for
L, on input (w, p), simulates M on input w taking the symbols of p as the nondeterministic choices
to be taken at each step. V accepts (w,p) if the simulation of M accepts.

(<) Let V be a verifier for L that runs in n* time. The nondeterministic TM for L will be as
follows

On input w
Nondeterministically pick a string p of length |w|*
Run V on (w,p) and accept only if V does

2.2 P versus NP

[s P = NP?

Can the collection of problems that have short, efficiently checkable proofs, be the same as the collection of problems for

which you can find short, efficiently checkable proofs, efficiently?
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