
1 Nondeterministic Time

1.1 Time Bounded Classes

Time Bounded Nondeterministic Computation

Definition 1. A nondeterministic Turing machine is said to run in time t(n) if on any input u,
every computation of M on u takes at most t(|u|) steps

Definition 2. L ∈ NTIME(t(n)) iff there is a nondeterministic TM M that runs in time t(n) and
L = L(M)

Linear Speedup
Nondeterministic TMs

Theorem 3. Let M be a k-tape nondeterministic TM running in time t(n). For any constant
c > 0, there is a k + 1-tape nondeterministic TM M ′ such that L(M ′) = L(M) and M ′ runs in
time ct(n) + n. (Note, here we think of c being less than 1.)

Proof. It is the same as the proof for deterministic TMs

Corollary 4. If n = o(t(n)) and (nondeterministic) M runs in time t′(n) such that t′(n) = O(t(n))
then L(M) ∈ NTIME(t(n)).

1.2 Relationship with Deterministic Classes

Nondeterministic and Deterministic Classes

Proposition 5. For any t(·), DTIME((t(n)) ⊆ NTIME(t(n))

Proof. Follows from the fact that a deterministic TM is special kind of nondeterministic TM.

Proposition 6. NTIME(t(n)) ⊆ DTIME(2t(n))

Proof. Let M be a nondeterministic TM running in t(n) time, and let d be an upper bound on the
number of choices at any step.

• Given a sequence of nondeterministic choices σ, a deterministic machine can simulate M on
that sequence.

• On input w, the deterministic machine tries out all sequence of nondeterministic choices of
length upto t(|w|), and simulates M , and checks if M accepts w on any such sequence.

• Total time is
∑t(n)

k=1 kd
k ≤ d2t(n)+2 = O(2t(n)).

1

2 NP

Nondeterministic Polynomial Time

Definition 7. NP = ∪kNTIME(nk)

Proposition 8. 1. P ⊆ NP

2. NP ⊆
⋃

k DTIME(2n
k
) = EXPTIME

Proof. Follows from the observations relating deterministic and nondeterministic classes.

2.1 Efficiently Verifiable Languages

Polynomially Verifiable Languages

Definition 9. A polynomial time verifier for a language L is a (deterministic) Turing machine V
such that

L = {w | ∃p. V accepts 〈w, c〉}

and V on input 〈w, p〉 takes at most |w|k steps, for some k.
If L has a polynomial verifier then L is said to be polynomially verifiable.

Remark
Since a polynomial verifier V for L runs in time |w|k (for some k) on input 〈w, p〉, it must be the
case that |p| ≤ |w|k.

Examples

Example 10. Let COMPOSITES = {n ∈ N | ∃p, q. n = pq and p, q > 1}. COMPOSITES are
polynomially verifiable. The “proof” that n is composite are factors p and q such that n = pq.
Observe that |p|, |q| ≤ |n| (so the proof is polynomially bounded), and the product pq can be
computed in time that is bounded by |p||q|.
Example 11. A Hamiltonian path in a directed graph G, is a path that visits every vertex (in G)
exactly once. Let

HAMPATH = {〈G, s, t〉 | G is a directed graph that has a
Hamiltonian path from s to t}

HAMPATH is polynomially verifiable. The proof that 〈G, s, t〉 ∈ HAMPATH is a Hamiltonian path
π from s to t. Observe that |π| is equal to the number of vertices in G, and given a path π, one
can check in linear time if it is Hamiltonian path from s to t.

Non-Example (?)

2

Example 12. HAMPATH which is the complement of HAMPATH may not be polynomially verifi-
able. It seems like the only “proof” that a graph G does not have a Hamiltonian path, would be
to go through all permutations on the vertices of G and check that thet are not valid paths.

Note, the above is just an argument for why HAMPATH may not be polynomially verifiable.
Nobody knows of a precise proof that establishes this fact.

NP and efficient verifiers

Theorem 13. L ∈ NP iff L has an efficient verifier.

Proof. (⇒) If M recognizes L in time nk then the “proof” for a string w ∈ L is a string p that lists
the sequence of nondeterministic choices that leads M to accept the input w. Thus, the verifier for
L, on input 〈w, p〉, simulates M on input w taking the symbols of p as the nondeterministic choices
to be taken at each step. V accepts 〈w, p〉 if the simulation of M accepts.

(⇐) Let V be a verifier for L that runs in nk time. The nondeterministic TM for L will be as
follows

On input w
Nondeterministically pick a string p of length |w|k
Run V on 〈w, p〉 and accept only if V does

2.2 P versus NP

Is P = NP?

Can the collection of problems that have short, efficiently checkable proofs, be the same as the collection of problems for

which you can find short, efficiently checkable proofs, efficiently?

3

	Nondeterministic Time
	Time Bounded Classes
	Relationship with Deterministic Classes

	NP
	Efficiently Verifiable Languages
	P versus NP

