1 Nondeterministic Time

1.1 Time Bounded Classes

Time Bounded Nondeterministic Computation

Definition 1. A nondeterministic Turing machine is said to run in *time* t(n) if on any input u, every computation of M on u takes at most t(|u|) steps

Definition 2. $L \in \text{NTIME}(t(n))$ iff there is a nondeterministic TM M that runs in time t(n) and $L = \mathbf{L}(M)$

Linear Speedup Nondeterministic TMs

Theorem 3. Let M be a k-tape nondeterministic TM running in time t(n). For any constant c > 0, there is a k + 1-tape nondeterministic TM M' such that $\mathbf{L}(M') = \mathbf{L}(M)$ and M' runs in time ct(n) + n. (Note, here we think of c being less than 1.)

Proof. It is the same as the proof for deterministic TMs

Corollary 4. If n = o(t(n)) and (nondeterministic) M runs in time t'(n) such that t'(n) = O(t(n)) then $\mathbf{L}(M) \in NTIME(t(n))$.

1.2 Relationship with Deterministic Classes

Nondeterministic and Deterministic Classes

Proposition 5. For any $t(\cdot)$, $DTIME((t(n)) \subseteq NTIME(t(n)))$

Proof. Follows from the fact that a deterministic TM is special kind of nondeterministic TM. \Box

Proposition 6. $NTIME(t(n)) \subseteq DTIME(2^{t(n)})$

Proof. Let M be a nondeterministic TM running in t(n) time, and let d be an upper bound on the number of choices at any step.

- Given a sequence of nondeterministic choices σ , a deterministic machine can simulate M on that sequence.
- On input w, the deterministic machine tries out all sequence of nondeterministic choices of length up to t(|w|), and simulates M, and checks if M accepts w on any such sequence.

• Total time is
$$\sum_{k=1}^{t(n)} k d^k \le d^{2t(n)+2} = O(2^{t(n)}).$$

2 NP

Nondeterministic Polynomial Time

Definition 7. NP = $\cup_k \text{NTIME}(n^k)$

Proposition 8. 1. $P \subseteq NP$

2. $NP \subseteq \bigcup_k DTIME(2^{n^k}) = EXPTIME$

Proof. Follows from the observations relating deterministic and nondeterministic classes. \Box

2.1 Efficiently Verifiable Languages

Polynomially Verifiable Languages

Definition 9. A polynomial time verifier for a language L is a (deterministic) Turing machine V such that

 $L = \{w \mid \exists p. V \text{ accepts } \langle w, c \rangle \}$

and V on input $\langle w, p \rangle$ takes at most $|w|^k$ steps, for some k.

If L has a polynomial verifier then L is said to be *polynomially verifiable*.

Remark

Since a polynomial verifier V for L runs in time $|w|^k$ (for some k) on input $\langle w, p \rangle$, it must be the case that $|p| \leq |w|^k$.

Examples

Example 10. Let COMPOSITES = $\{n \in \mathbb{N} \mid \exists p, q. n = pq \text{ and } p, q > 1\}$. COMPOSITES are polynomially verifiable. The "proof" that n is composite are factors p and q such that n = pq. Observe that $|p|, |q| \leq |n|$ (so the proof is polynomially bounded), and the product pq can be computed in time that is bounded by |p||q|.

Example 11. A Hamiltonian path in a directed graph G, is a path that visits every vertex (in G) exactly once. Let

 $\begin{array}{ll} \text{HAMPATH} = \{ \langle G, s, t \rangle \mid & G \text{ is a directed graph that has a} \\ & \text{Hamiltonian path from } s \text{ to } t \} \end{array}$

HAMPATH is polynomially verifiable. The proof that $\langle G, s, t \rangle \in$ HAMPATH is a Hamiltonian path π from s to t. Observe that $|\pi|$ is equal to the number of vertices in G, and given a path π , one can check in linear time if it is Hamiltonian path from s to t.

Non-Example (?)

Example 12. HAMPATH which is the complement of HAMPATH may not be polynomially verifiable. It seems like the only "proof" that a graph G does not have a Hamiltonian path, would be to go through all permutations on the vertices of G and check that thet are not valid paths.

Note, the above is just an argument for why $\overline{\text{HAMPATH}}$ may not be polynomially verifiable. Nobody knows of a precise proof that establishes this fact.

NP and efficient verifiers

Theorem 13. $L \in NP$ iff L has an efficient verifier.

Proof. (\Rightarrow) If M recognizes L in time n^k then the "proof" for a string $w \in L$ is a string p that lists the sequence of nondeterministic choices that leads M to accept the input w. Thus, the verifier for L, on input $\langle w, p \rangle$, simulates M on input w taking the symbols of p as the nondeterministic choices to be taken at each step. V accepts $\langle w, p \rangle$ if the simulation of M accepts.

 (\Leftarrow) Let V be a verifier for L that runs in n^k time. The nondeterministic TM for L will be as follows

```
On input w
```

```
Nondeterministically pick a string p of length |w|^k
Run V on \langle w, p \rangle and accept only if V does
```

2.2 P versus NP

Is
$$P = NP?$$

Can the collection of problems that have short, efficiently checkable proofs, be the same as the collection of problems for which you can *find* short, efficiently checkable proofs, *efficiently*?