1 Rice's Theorem

1.1 Properties

Checking Properties

Given M

$$\begin{array}{c} \operatorname{Does} \mathbf{L}(M) \operatorname{contain} \langle M \rangle ? \\ \operatorname{Is} \mathbf{L}(M) \operatorname{non-empty} ? \\ \operatorname{Is} \mathbf{L}(M) \operatorname{empty} ? \\ \operatorname{Is} \mathbf{L}(M) \operatorname{infinite} ? \\ \operatorname{Is} \mathbf{L}(M) \operatorname{finite} ? \\ \operatorname{Is} \mathbf{L}(M) \operatorname{co-finite} (\text{i.e., is} \overline{\mathbf{L}(M)} \operatorname{finite}) ? \\ \operatorname{Is} \mathbf{L}(M) = \Sigma^* ? \end{array} \right\}$$
Undecidable

None of these properties can be decided. This is the content of Rice's Theorem. ______ Properties

Definition 1. A property of languages is simply a set of languages. We say L satisfies the property \mathbb{P} if $L \in \mathbb{P}$.

Definition 2. For any property \mathbb{P} , define language $L_{\mathbb{P}}$ to consist of Turing Machines which accept a language in \mathbb{P} :

$$L_{\mathbb{P}} = \{ \langle M \rangle \mid \mathbf{L}(M) \in \mathbb{P} \}$$

Deciding $L_{\mathbb{P}}$: deciding if a language represented as a TM satisfies the property \mathbb{P} .

- Example: $\{\langle M \rangle \mid \mathbf{L}(M) \text{ is infinite}\}; E_{\text{TM}} = \{\langle M \rangle \mid \mathbf{L}(M) = \emptyset\}$
- Non-example: $\{\langle M \rangle \mid M \text{ has 15 states}\} \leftarrow$ This is a property of TMs, and not languages!

Trivial Properties

Definition 3. A property is trivial if either it is not satisfied by any r.e. language, or if it is satisfied by all r.e. languages. Otherwise it is non-trivial.

Example 4. Some trivial properties:

- $\mathbb{P}_{ALL} = set of all languages$
- $\mathbb{P}_{R.E.}$ = set of all r.e. languages
- $\overline{\mathbb{P}}$ where \mathbb{P} is trivial
- $\mathbb{P} = \{L \mid L \text{ is recognized by a TM with an even number of states}\} = \mathbb{P}_{R.E.}$

Observation. For any trivial property \mathbb{P} , $L_{\mathbb{P}}$ is decidable. (Why?) Then $L_{\mathbb{P}} = \Sigma^*$ or $L_{\mathbb{P}} = \emptyset$.

1.2 Main Theorem

Rice's Theorem

Proposition 5. If \mathbb{P} is a non-trivial property, then $L_{\mathbb{P}}$ is undecidable.

• Thus $\{\langle M \rangle \mid \mathbf{L}(M) \in \mathbb{P}\}$ is not decidable (unless \mathbb{P} is trivial)

We cannot algorithmically determine any interesting property of languages represented as Turing Machines! ______ Properties of TMs

Note. Properties of TMs, as opposed to those of languages they accept, may or may not be decidable.

Example 6.

$\{\langle M \rangle \mid M \text{ has } 193 \text{ states}\}$	Decidable
$\{\langle M \rangle \mid M \text{ uses at most } 32 \text{ tape cells on blank input}\}$	
$\{\langle M \rangle \mid M \text{ halts on blank input}\}$	
$\{\langle M \rangle \mid \text{ on input 0011 } M \text{ at some point writes the } \}$	Undecidable
symbol \$ on its tape}	J

Proof of Rice's Theorem

Rice's Theorem

If \mathbb{P} is a non-trivial property, then $L_{\mathbb{P}}$ is undecidable.

Proof. Suppose \mathbb{P} non-trivial and $\emptyset \notin \mathbb{P}$. If $\emptyset \in \mathbb{P}$, then in the following we will be showing $L_{\overline{\mathbb{P}}}$ is undecidable. Then $L_{\mathbb{P}} = \overline{L_{\overline{\mathbb{P}}}}$ is also undecidable.

Recall $L_{\mathbb{P}} = \{ \langle M \rangle | \mathbf{L}(M) \text{ satisfies } \mathbb{P} \}$. We'll reduce A_{TM} to $L_{\mathbb{P}}$. Then, since A_{TM} is undecidable, $L_{\mathbb{P}}$ is also undecidable. Broadly the idea behind the reduction is as follows. Since \mathbb{P} is non-trivial, at least one r.e. language satisfies \mathbb{P} . i.e., $\mathbf{L}(M_0) \in \mathbb{P}$ for some TM M_0 . We will show a reduction f that maps an instance $\langle M, w \rangle$ for A_{TM} , to N such that

- If M accepts w then N accepts the same language as M_0 . Then $\mathbf{L}(M) = \mathbf{L}(M_0) \in \mathbb{P}$
- If M does not accept w then N accepts \emptyset . Then $L(N) = \emptyset \notin \mathbb{P}$

Thus, $\langle M, w \rangle \in A_{\text{TM}}$ iff $N \in L_{\mathbb{P}}$.

We now describe the reduction precisely. The reduction f maps $\langle M, w \rangle$ to $\langle N \rangle$, where N is a TM that behaves as follows:

On input x

```
Ignore the input and run M on w

If M does not accept (or doesn't halt)

then do not accept x (or do not halt)

If M does accept w

then run M_0 on x and accept x iff M_0 does.
```

Notice that indeed if M accepts w then $\mathbf{L}(N) = \mathbf{L}(M_0)$. Otherwise $\mathbf{L}(N) = \emptyset$.

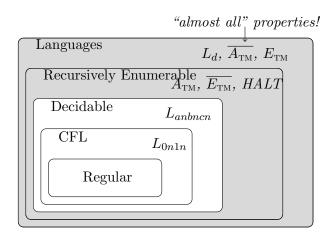
Rice's Theorem

Recap

Every non-trivial property of r.e. languages is undecidable

- Rice's theorem says nothing about properties of Turing machines
- Rice's theorem says nothing about whether a property of languages is recurisvely enumerable or not.

Big Picture ... again



2 Closure Properties

2.1 Decidable Languages

Boolean Operators

Proposition 7. Decidable languages are closed under union, intersection, and complementation.

Proof. Given TMs M_1 , M_2 that decide languages L_1 , and L_2

- A TM that decides $L_1 \cup L_2$: on input x, run M_1 and M_2 on x, and accept iff either accepts. (Similarly for intersection.)
- A TM that decides $\overline{L_1}$: On input x, run M_1 on x, and accept if M_1 rejects, and reject if M_1 accepts.

Regular Operators

Proposition 8. Decidable languages are closed under concatenation and Kleene Closure.

Proof. Given TMs M_1 and M_2 that decide languages L_1 and L_2 .

- A TM to decide L_1L_2 : On input x, for each of the |x| + 1 ways to divide x as yz: run M_1 on y and M_2 on z, and accept if both accept. Else reject.
- A TM to decide L_1^* : On input x, if $x = \epsilon$ accept. Else, for each of the $2^{|x|-1}$ ways to divide x as $w_1 \dots w_k$ ($w_i \neq \epsilon$): run M_1 on each w_i and accept if M_1 accepts all. Else reject. \Box

Inverse Homomorphisms

Proposition 9. Decidable languages are closed under inverse homomorphisms.

Proof. Given TM M_1 that decides L_1 , a TM to decide $h^{-1}(L_1)$ is: On input x, compute h(x) and run M_1 on h(x); accept iff M_1 accepts.

Homomorphisms

Proposition 10. Decidable languages are not closed under homomorphism

Proof. We will show a decidable language L and a homomorphism h such that h(L) is undecidable

- Let $L = \{xy \mid x \in \{0,1\}^*, y \in \{a,b\}^*, x = \langle M, w \rangle$, and y encodes an integer n such that the TM M on input w will halt in n steps $\}$
- L is decidable: can simply simulate M on input w for n steps
- Consider homomorphism h: h(0) = 0, h(1) = 1, $h(a) = h(b) = \epsilon$.
- h(L) = HALT which is undecidable.

2.2 Recursively Enumerable Languages

Boolean Operators

Proposition 11. R.E. languages are closed under union, and intersection.

Proof. Given TMs M_1 , M_2 that recognize languages L_1 , L_2

• A TM that recognizes $L_1 \cup L_2$: on input x, run M_1 and M_2 on x in parallel, and accept iff either accepts. (Similarly for intersection; but no need for parallel simulation)

Complementation

Proposition 12. R.E. languages are not closed under complementation.

Proof. A_{TM} is r.e. but $\overline{A_{\text{TM}}}$ is not.

Regular Operations

Proposition 13. R.E languages are closed under concatenation and Kleene closure.

Proof. Given TMs M_1 and M_2 recognizing L_1 and L_2

- A TM to recognize L_1L_2 : On input x, do in parallel, for each of the |x| + 1 ways to divide x as yz: run M_1 on y and M_2 on z, and accept if both accept. Else reject.
- A TM to recognize L_1^* : On input x, if $x = \epsilon$ accept. Else, do in parallel, for each of the $2^{|x|-1}$ ways to divide x as $w_1 \dots w_k$ ($w_i \neq \epsilon$): run M_1 on each w_i and accept if M_1 accepts all. Else reject.

Homomorphisms

Proposition 14. *R.E.* languages are closed under both inverse homomorphisms and homomorphisms.

Proof. Let TM M_1 recognize L_1 .

- A TM to recognize $h^{-1}(L_1)$:On input x, compute h(x) and run M_1 on h(x); accept iff M_1 accepts.
- A TM to recognize $h(L_1)$: On input x, start going through all strings w, and if h(w) = x, start executing M_1 on w, using *dovetailing* to interleave with other executions of M_1 . Accept if any of the executions accepts.