1 Reductions

1.1 Definitions and Observations

Mapping Reductions

Definition 1. A function $f: \Sigma^* \to \Sigma^*$ is *computable* if there is some Turing Machine M that on every input w halts with f(w) on the tape.

Definition 2. A reduction (a.k.a. mapping reduction/many-one reduction) from a language A to a language B is a computable function $f: \Sigma^* \to \Sigma^*$ such that

 $w \in A$ if and only if $f(w) \in B$

In this case, we say A is *reducible* to B, and we denote it by $A \leq_m B$.

Convention

In this course, we will drop the adjective "mapping" or "many-one", and simply talk about reductions and reducibility.

Reductions and Recursive Enumerability

Proposition 3. If $A \leq_m B$ and B is r.e., then A is r.e.

Proof. Let f be a reduction from A to B and let M_B be a Turing Machine recognizing B. Then the Turing machine recognizing A is

```
On input w Compute f(w) Run M_B on f(w) Accept if M_B accepts, and reject if M_B rejects \ \Box
```

Corollary 4. If $A \leq_m B$ and A is not r.e., then B is not r.e.

Reductions and Decidability

Proposition 5. If $A \leq_m B$ and B is decidable, then A is decidable.

Proof. Let f be a reduction from A to B and let M_B be a Turing Machine deciding B. Then a Turing machine that decides A is

```
On input w
Compute f(w)
Run M_B on f(w)
Accept if M_B accepts, and reject if M_B rejects \Box
```

Corollary 6. If $A \leq_m B$ and A is undecidable, then B is undecidable.

1.2 Examples

The Halting Problem

Proposition 7. The language $HALT = \{ \langle M, w \rangle \mid M \text{ halts on input } w \}$ is undecidable.

Proof. Recall $A_{\text{TM}} = \{ \langle M, w \rangle | w \in L(M) \}$ is undecidable. Will give reduction f to show $A_{\text{TM}} \leq_m$ HALT \implies HALT undecidable.

Let $f(\langle M, w \rangle) = \langle N, w \rangle$ where N is a TM that behaves as follows:

On input xRun M on xIf M accepts then halt and accept If M rejects then go into an infinite loop

N halts on input w if and only if M accepts w. i.e., $\langle M, w \rangle \in A_{\text{TM}}$ iff $f(\langle M, w \rangle) \in \text{HALT}$

Emptiness of Turing Machines

Proposition 8. The language $E_{\text{TM}} = \{ \langle M \rangle \mid \mathbf{L}(M) = \emptyset \}$ is not r.e.

Proof. Recall $L_d = \{ \langle M \rangle \mid M \notin \mathbf{L}(M) \}$ is not r.e. L_d is reducible to E_{TM} as follows. Let $f(M) = \langle N \rangle$ where N is a TM that behaves as follows:

On input x

Run M on $\langle M\rangle$ for |x| steps Accept x only if M accepts $\langle M\rangle$ within |x| steps

Observe that $\mathbf{L}(N) = \emptyset$ if and only if M does not accept $\langle M \rangle$ if and only if $\langle M \rangle \in L_d$.

Checking Regularity

Proposition 9. The language $REGULAR = \{\langle M \rangle \mid \mathbf{L}(M) \text{ is regular}\}$ is undecidable.

Proof. We give a reduction f from A_{TM} to REGULAR. Let $f(\langle M, w \rangle) = \langle N \rangle$, where N is a TM that works as follows:

On input xIf x is of the form $0^n 1^n$ then accept xelse run M on w and accept x only if M does

If $w \in \mathbf{L}(M)$ then $\mathbf{L}(N) = \Sigma^*$. If $w \notin \mathbf{L}(M)$ then $\mathbf{L}(N) = \{0^n 1^n \mid n \ge 0\}$. Thus, $\langle N \rangle \in \mathbb{R}$ EGULAR if and only if $\langle M, w \rangle \in A_{\text{TM}}$

Checking Equality

Proposition 10. $EQ_{\text{TM}} = \{ \langle M_1, M_2 \rangle \mid \mathbf{L}(M_1) = \mathbf{L}(M_2) \}$ is not r.e.

Proof. We will give a reduction f from E_{TM} to EQ_{TM}. Let M_1 be the Turing machine that on any input, halts and rejects i.e., $\mathbf{L}(M_1) = \emptyset$. Take $f(M) = \langle M, M_1 \rangle$.

Observe $\langle M \rangle \in E_{\text{TM}}$ iff $\mathbf{L}(M) = \emptyset$ iff $\mathbf{L}(M) = \mathbf{L}(M_1)$ iff $\langle M, M_1 \rangle \in \text{EQ}_{\text{TM}}$.