
1 High-Level Descriptions of Computation

High-Level Descriptions of Computation

• Instead of giving a Turing Machine, we shall often describe a program as code in some
programming language (or often “pseudo-code”)

– Possibly using high level data structures and subroutines

• Inputs and outputs are complex objects, encoded as strings

• Examples of objects:

– Matrices, graphs, geometric shapes, images, videos, . . .

– DFAs, NFAs, Turing Machines, Algorithms, other machines . . .

Encoding Complex Objects

• “Everything” finite can be encoded as a (finite) string of symbols from a finite alphabet (e.g.
ASCII)

– Can in turn be encoded in binary (as modern day computers do). No special t symbol:
use self-terminating representations

Example 1. A “graph” can be encoded as 〈(1, 2, 3, 4)((1, 2)(2, 3)(3, 1)(1, 4))〉 where the graph is

1

2

3

4

Notation
For any object O, we will use 〈O〉 to denote its representation as a binary string.

• Thus, if M is a DFA/PDA/TM then 〈M〉 is its encoding as a binary string.

• If G is a graph then 〈G〉 is its representation as a string.

• If O1, O2, . . . On are objects then 〈O1, . . . On〉 is the representation of these objects as a single
string.

Problems with Programs/Machines as Input

• We will often consider problems where machines/programs are given as input.

– Given an NFA, construct the equivalent DFA; given an NFA N and word w, decide if
w ∈ L(N); . . .

1

• All of these algorithms can be implemented on a Turing machine

• Some of these algorithms are for decision problems, while others are for computing more
general functions

Decision Problems and Languages

Recall

• Decision problems are problems that require a yes/no answer on a given input

• They have an exact correspondence to languages: L is a representation of problem P if and
only if an input x ∈ L iff answer for x is yes in problem P .

2 Deciding vs. Recognizing

Decidable and Recognizable Languages

Recognizable Language
A Turing machine M recognizes language L if L = L(M). We say L is Turing-recognizable (or
simply recognizable) if there is a TM M such that L = L(M).

Decidable Language
A Turing machine M decides language L if L = L(M) and M halts on all inputs. We say L is
decidable if there is a TM M that decides L.

Decidable Problems

The following problems are all decidable.

• Problem: Given a DFA M and input w decide if M accepts w. We can write this formally
as a language (using our notation) as Adfa = {〈M,w〉 |M is a DFA and w ∈ L(M)}.
Algorithm: “Simulate” M on w and answer “yes” iff M reaches a final state.

• Problem: Given a NFA M and input w decide if M accepts w. We can write this formally
as a language (using our notation) as Anfa = {〈M,w〉 |M is an NFA and w ∈ L(M)}.
Algorithm: Convert M into a DFA and run the algorithm for Adfa.

• Problem: Arex = {〈R,w〉 |R is a regular expression and w ∈ L(R)}.
Algorithm: Convert R into a NFA and run the algorithm for Anfa.

2

• Problem: Given a DFA M answer “yes” iff L(M) = ∅. Formally,

Edfa = {〈M〉 |M is a DFA s.t. L(M) = ∅}

Algorithm: Check if a final state is reachable from the start state by using a graph search
algorithm like DFS/BFS.

• Problem: Given DFA A and B, check if L(A) = L(B). In other words,

EQdfa = {〈A,B〉 |A,B are DFAs s.t. L(A) = L(B)}.

Algorithm: Construct (using cross-product construction) the DFA C recognizing (L(A) ∩
L(B)) ∪ (L(A) ∩ L(B)) and check if L(C) = ∅.

• Problem: Acfg = {〈G,w〉 |G is a CFG s.t. w ∈ L(G)}.
Algorithm: Convert G to G′ in Chomsky normal form. Now w ∈ L(G′) iff w can be derived
in 2|w| − 1 steps, where none of the intermediate strings is of length more than |w|. Go
through all such derivations (which is finite) and check if they derive w.

2.1 An Undecidable but Recognizable Language

Decidable and Recognizable Languages

• But not all languages are decidable! In the next class we will see an example:

– Atm = {〈M,w〉 |M is a TM and w ∈ L(M)} is undecidable

• However Atm is Turing-recognizable!

Proposition 2. There are languages which are recognizable, but not decidable

Recognizing Atm

Program U for recognizing Atm:

On input 〈M,w〉
simulate M on w
if simulated M accepts w, then accept

else reject (by moving to qrej)

U (the Universal TM) accepts 〈M,w〉 iff M accepts w. i.e.,

L(U) = Atm

But U does not decide Atm: If M rejects w by not halting, U rejects 〈M,w〉 by not halting.
Indeed (as we shall see) no TM decides Atm.

3

2.2 Complementation

Deciding vs. Recognizing

Proposition 3. If L and L are recognizable, then L is decidable

Proof. Program P for deciding L, given programs PL and PL for recognizing L and L:

• On input x, simulate PL and PL on input x. Whether x ∈ L or x 6∈ L, one of PL and PL will
halt in finite number of steps.

• Which one to simulate first? Either could go on forever.

• On input x, simulate in parallel PL and PL on input x until either PL or PL accepts

• If PL accepts, accept x and halt. If PL accepts, reject x and halt.

In more detail, P works as follows:

On input x

for i = 1, 2, 3, . . .
simulate PL on input x for i steps

simulate PL on input x for i steps

if either simulation accepts, break

if PL accepted, accept x (and halt)

if PL accepted, reject x (and halt)

(Alternately, maintain configurations of PL and PL, and in each iteration of the loop advance
both their simulations by one step.)

Deciding vs. Recognizing
So far:

• Atm is undecidable (next lecture)

• But it is recognizable

• Is every language recognizable? No!

Proposition 4. Atm is unrecognizable

Proof. If Atm is recognizable, since Atm is recognizable, the two languages will be decidable too!

Note: Decidable languages are closed under complementation, but recognizable languages are
not.

4

3 Recursive Enumeration

3.1 Enumerators

Enumerators

write only output tape

read/write work tape

read/write work tape

finite-state
control

• An enumerator is multi-tape Turing Machine, with a special output tape which is write-only

– Write-only means (a) symbol on output tape does not affect transitions, and (b) tape
head only moves right.

• Intially all tapes blank (no input). During computation the machine adds symbols to the
output tape. Output considered to be a list of words (separated by special symbol #)

Recursively Enumerable Languages

Definition 5. An enumerator M is said to enumerate a string w if and only if at some point M
writes a word w on the output tape. E(M) = {w |M enumerates w}

Note
M need not enumerate strings in order. It is also possible that M lists some strings many times!

Definition 6. L is recursively enumerable (r.e.) iff there is an enumerator M such that L = E(M).

3.2 Equivalence of Enumerating and Recognizing a Language

Recursively Enumerable Languages and TMs

Theorem 7. L is recursively enumerable if and only if L is Turing-recognizable.

Note
Hence, when we say a language L is recursively enumerable (r.e.) then

5

• there is a TM that accepts L, and

• there is an enumerator that enumerates L.

Proof. Enumerator to Recognizer: Suppose L is enumerated by N . Need to construct M such
that L(M) = E(N). M is the following TM

On input w
Run N. Every time N writes a word ‘x’
compare x with w.
If x = w then accept and halt

else continue simulating N

Clearly, if w ∈ L, M accepts w, and if w 6∈ L then M never halts.
Flawed Solution to Construct an enumerator: Let M be such that L = L(M). Need to

construct N such that E(N) = L(M). N is the following enumerator

for w = ε, 0, 1, 00, 01, 10, 11, 000, . . . do
simulate M on w
if M accepts w then write the word ‘w’

on output tape

Does N enumerate L? No!! M may not halt on a string w 6∈ L, in which case N will not output
any more strings! Therefore, one must simulate M on all inputs in parallel. But that means we
need to have infinitely many parallel executions. How can this be accomplished?

Correct Construction using Dovetailing: Let M be such that L = L(M). Need to con-
struct N such that E(N) = L(M). N is the following enumerator

for i = 1, 2, 3 . . . do
let w1, w2, . . . wi be the first i strings (in

lexicographic order)

simulate M on w1 for i steps, then on w2 for i
steps and ...simulate M on wi for i steps

if M accepts wj within i steps then write wj

(with separator) on output tape

Observe that w ∈ L(M) iff N will enumerates w. N will enumerate strings many times!

6

	High-Level Descriptions of Computation
	Deciding vs. Recognizing
	An Undecidable but Recognizable Language
	Complementation

	Recursive Enumeration
	Enumerators
	Equivalence of Enumerating and Recognizing a Language

