1 Chomsky Hierarchy

Grammars for each task

Figure 1: Noam Chomsky

- Different types of rules, allow one to describe different aspects of natural language
- These grammars form a hierarchy

Grammars in General

All grammars we consider will be of the form $G = (V, \Sigma, R, S)$

- \bullet V is a finite set of variables
- Σ is a finite set of terminals
- \bullet R is a finite set of rules
- \bullet S is the start symbol

The different grammars will be determined by the form of the rules in R.

1.1 Regular Languages

Type 3 Grammars

The rules in a type 3 grammar are of the form

$$A \to aB$$
 or $A \to a$

where $A, B \in V$ and $a \in \Sigma \cup \{\epsilon\}$.

We say $\alpha A\beta \Rightarrow_G \alpha \gamma \beta$ iff $A \to \gamma \in R$. $\mathbf{L}(G) = \{ w \in \Sigma^* \mid S \stackrel{*}{\Rightarrow}_G w \}$

1.1.1 Type 3 Grammars and Regularity

Type 3 Grammars and Regularity

Proposition 1. If G is Type 3 grammar then L(G) is regular. Conversely, if L is regular then there is a Type 3 grammar G such that L = L(G).

Proof. Let $G = (V, \Sigma, R, S)$ be a type 3 grammar. Consider the NFA $M = (Q, \Sigma, \delta, q_0, F)$ where

- $Q = V \cup \{q_F\}$, where $q_F \notin V$
- $\bullet \ q_0 = S$
- $\bullet \ F = \{q_F\}$
- $\delta(A,a) = \{B \mid \text{if } A \to aB \in R\} \cup \{q_F \mid \text{if } A \to a \in R\} \text{ for } A \in V. \text{ And } \delta(q_F,a) = \emptyset \text{ for all } a.$

 $\mathbf{L}(M) = L(G)$ as $\forall A \in V$, $\forall w \in \Sigma^*$, $A \stackrel{*}{\Rightarrow}_G w$ iff $A \stackrel{w}{\longrightarrow}_M q_F$.

Conversely, let $M = (Q, \Sigma, \delta, q_0, F)$ be a NFA recognizing L. Consider $G = (V, \Sigma, R, S)$ where

- $\bullet V = Q$
- $S = q_0$
- $q_1 \to aq_2 \in R$ iff $q_2 \in \delta(q_1, a)$ and $q \to \epsilon \in R$ iff $q \in F$.

We can show, for any $q, q' \in Q$ and $w \in \Sigma^*$, $q \xrightarrow{w}_M q'$ iff $q \stackrel{*}{\Rightarrow}_G wq'$. Thus, $\mathbf{L}(M) = \mathbf{L}(G)$.

1.2 Context-free Languages

Type 2 Grammars

The rules in a type 2 grammar are of the form

$$A \rightarrow \beta$$

where $A \in V$ and $\beta \in (\Sigma \cup V)^*$.

We say $\alpha A\beta \Rightarrow_G \alpha \gamma \beta$ iff $A \to \gamma \in R$. $\mathbf{L}(G) = \{ w \in \Sigma^* \mid S \stackrel{*}{\Rightarrow}_G w \}$

By definition, Type 2 grammars describe exactly the class of context-free languages.

1.3 Beyond Context-Free Languages

1.3.1 Type 0 Grammars

Type 0 Grammars

The rules in a type 0 grammar are of the form

$$\alpha \to \beta$$

where $\alpha, \beta \in (\Sigma \cup V)^*$.

We say
$$\gamma_1 \alpha \gamma_2 \Rightarrow_G \gamma_1 \beta \gamma_2$$
 iff $\alpha \to \beta \in R$. $\mathbf{L}(G) = \{ w \in \Sigma^* \mid S \stackrel{*}{\Rightarrow}_G w \}$

Example of Type 0 Grammar

Example 2. Consider the grammar G with $\Sigma = \{a\}$ with

$$S \rightarrow \$Ca\# \mid a \mid \epsilon \qquad \qquad Ca \rightarrow aaC \qquad \$D \rightarrow \$C$$

$$C\# \rightarrow D\# \mid E \qquad \qquad aD \rightarrow Da \qquad \qquad aE \rightarrow Ea$$

$$\$E \rightarrow \epsilon$$

The following are derivations in this grammar

$$S \Rightarrow \$Ca\# \Rightarrow \$aaC\# \Rightarrow \$aaE \Rightarrow \$Eaa \Rightarrow aa$$

$$S \Rightarrow \$Ca\# \Rightarrow \$aaC\# \Rightarrow \$aaD\# \Rightarrow \$Daa\# \Rightarrow \$Daa\# \Rightarrow \$Caa\# \Rightarrow \$aaCa\# \Rightarrow \$aaaaE \Rightarrow \$aaaEa \Rightarrow \$aaEaa \Rightarrow \$aaaa \Rightarrow \$Eaaa \Rightarrow \$Eaaa \Rightarrow aaa$$

$$\mathbf{L}(G) = \{a^i \mid i \text{ is a power of } 2\}$$

Expressive Power of Type 0 Grammars

Recall that any decision problem can be thought of as a formal language L, where $x \in L$ iff the answer on input x is "yes".

Proposition 3. A decision problem L can be "solved on computers" iff L can be described by a Type 0 grammar.

Proof. Need to develop some theory, that we will see in the next few weeks. \Box

1.3.2 Type 1 Grammars

Type 1 Grammars

The rules in a type 1 grammar are of the form

$$\alpha \to \beta$$

where $\alpha, \beta \in (\Sigma \cup V)^*$ and $|\alpha| \leq |\beta|$.

We say
$$\gamma_1 \alpha \gamma_2 \Rightarrow_G \gamma_1 \beta \gamma_2$$
 iff $\alpha \to \beta \in R$. $\mathbf{L}(G) = \{ w \in \Sigma^* \mid S \stackrel{*}{\Rightarrow}_G w \}$

Normal Form for Type 1 Grammars

We can define a normal form for Type 1 grammars where all rules are of the form

$$\alpha_1 A \alpha_2 \to \alpha_1 \beta \alpha_2$$

Thus, the rules in Type 1, can be seen as rules of a CFG where a variable A is replaced by a string β in one step, with the only difference being that rule can be applied only in the context $\alpha_1 \square \alpha_2$.

Thus, languages described by Type 1 grammars are called *context-sensitive languages*.

1.3.3 Hierarchy

Chomsky Hierarchy

Theorem 4. Type 0, Type 1, Type 2, and Type 3 grammars define a strict hierarchy of formal languages.

Proof. Clearly a Type 3 grammar is a special Type 2 grammar, a Type 2 grammar is a special Type 1 grammar, and a Type 1 grammar is special Type 0 grammar.

Moreover, there is a language that has a Type 2 grammar but no Type 3 grammar $(L = \{0^n1^n \mid n \geq 0\})$, a language that has a Type 1 grammar but no Type 2 grammar $(L = \{a^nb^nc^n \mid n \geq 0\})$, and a language with a Type 0 grammar but no Type 1 grammar.

Overview of Languages

