1 Closure Properties

1.1 Homomorphisms

Homomorphism

Proposition 1. Context free languages are closed under homomorphisms.

Proof. Let $G = (V, \Sigma, R, S)$ be the grammar generating L, and let $h : \Sigma^* \to \Gamma^*$ be a homomorphism. A grammar $G' = (V', \Gamma, R', S')$ for generating h(L):

- Include all variables from G (i.e., $V' \supseteq V$), and let S' = S
- Treat terminals in G as variables. i.e., for every $a \in \Sigma$
 - Add a new variable X_a to V'
 - In each rule of G, if a appears in the RHS, replace it by X_a
- For each X_a , add the rule $X_a \to h(a)$

G' generates h(L). (Exercise!)

Example 2. Let G have the rules $S \to 0S0|1S1|\epsilon$. Consider the homorphism $h: \{0,1\}^* \to \{a,b\}^*$ given by h(0) = aba and h(1) = bb. Rules of G' s.t. $\mathbf{L}(G') = \mathbf{L}(L(G))$:

$$S \rightarrow X_0 S X_0 |X_1 S X_1| \epsilon$$
$$X_0 \rightarrow aba$$
$$X_1 \rightarrow bb$$

1.2 Inverse Homomorphisms

Inverse Homomorphisms

Recall: For a homomorphism $h, h^{-1}(L) = \{w \mid h(w) \in L\}$

Proposition 3. If L is a CFL then $h^{-1}(L)$ is a CFL

Proof Idea

For regular language L: the DFA for $h^{-1}(L)$ on reading a symbol a, simulated the DFA for L on h(a). Can we do the same with PDAs?

- Key idea: store h(a) in a "buffer" and process symbols from h(a) one at a time (according to the transition function of the original PDA), and the next input symbol is processed only after the "buffer" has been emptied.
- Where to store this "buffer"? In the state of the new PDA!

Proof. Let $P = (Q, \Delta, \Gamma, \delta, q_0, F)$ be a PDA such that $\mathbf{L}(P) = L$. Let $h : \Sigma^* \to \Delta^*$ be a homomorphism such that $n = \max_{a \in \Sigma} |h(a)|$, i.e., every symbol of Σ is mapped to a string under h of length at most n. Consider the PDA $P' = (Q', \Sigma, \Gamma, \delta', q'_0, F')$ where

- $Q' = Q \times \Delta^{\leq n}$, where $\Delta^{\leq n}$ is the collection of all strings of length at most *n* over Δ .
- $q'_0 = (q_0, \epsilon)$
- $F' = F \times \{\epsilon\}$
- δ' is given by

$$\delta'((q,v),x,a) = \begin{cases} \{((q,h(x)),\epsilon)\} & \text{if } v = a = \epsilon \\ \{((p,u),b) \mid (p,b) \in \delta(q,y,a)\} & \text{if } v = yu, x = \epsilon, \text{ and } y \in \Delta \end{cases}$$

and $\delta'(\cdot) = \emptyset$ in all other cases.

We can show by induction that for every $w \in \Sigma^*$

$$\langle q'_0,\epsilon\rangle \xrightarrow{w}_{P'} \langle (q,v),\sigma\rangle \text{ iff } \langle q_0,\epsilon\rangle \xrightarrow{w'}_{P} \langle q,\sigma\rangle$$

where h(w) = w'v. Again this induction proof is left as an exercise. Now, $w \in \mathbf{L}(P')$ iff $\langle q'_0, \epsilon \rangle \xrightarrow{w}_{P'} \langle (q, \epsilon), \sigma \rangle$ where $q \in F$ (by definition of PDA acceptance and F') iff $\langle q_0, \epsilon \rangle \xrightarrow{h(w)}_{P} \langle q, \sigma \rangle$ (by exercise) iff $h(w) \in \mathbf{L}(P)$ (by definition of PDA acceptance). Thus, $\mathbf{L}(P') = h^{-1}(\mathbf{L}(P)) = h^{-1}(L)$. \Box