1 Chomsky Normal Form

Normal Forms for Grammars

It is typically easier to work with a context free language if given a CFG in a normal form.

Normal Forms

A grammar is in a normal form if its production rules have a special structure:

- Chomsky Normal Form: Productions are of the form $A \rightarrow B C$ or $A \rightarrow a$, where A, B, C are variables and a is a terminal symbol.
- Greibach Normal Form Productions are of the form $A \rightarrow a \alpha$, where $\alpha \in V^{*}$ and $A \in V$.

If ϵ is in the language, we allow the rule $S \rightarrow \epsilon$. We will require that S does not appear on the right hand side of any rules.

We will restrict our discussion to Chomsky Normal Form.
Main Result

Proposition 1. For any non-empty context-free language L, there is a grammar G, such that $L(G)=L$ and each rule in G is of the form

1. $A \rightarrow a$ where $a \in \Sigma$, or
2. $A \rightarrow B C$ where neither B nor C is the start symbol, or
3. $S \rightarrow \epsilon$ where S is the start symbol (iff $\epsilon \in L$)

Furthermore, G has no useless symbols.

Outline of Normalization

Given $G=(V, \Sigma, S, P)$, convert to CNF

- Let $G^{\prime}=\left(V^{\prime}, \Sigma, S, P^{\prime}\right)$ be the grammar obtained after eliminating ϵ-productions, unit productions, and useless symbols from G.
- If $A \rightarrow x$ is a rule of G^{\prime}, where $|x|=0$, then A must be S (because G^{\prime} has no other ϵ productions). If $A \rightarrow x$ is a rule of G^{\prime}, where $|x|=1$, then $x \in \Sigma$ (because G^{\prime} has no unit productions). In either case $A \rightarrow x$ is in a valid form.
- All remaining productions are of form $A \rightarrow X_{1} X_{2} \cdots X_{n}$ where $X_{i} \in V^{\prime} \cup \Sigma, n \geq 2$ (and S does not occur in the RHS). We will put these rules in the right form by applying the following two transformations:

1. Make the RHS consist only of variables
2. Make the RHS be of length 2 .

Make the RHS consist only of variables

Let $A \rightarrow X_{1} X_{2} \cdots X_{n}$, with X_{i} being either a variable or a terminal. We want rules where all the X_{i} are variables.
Example 2. Consider $A \rightarrow B b C d e f G$. How do you remove the terminals?
For each $a, b, c \ldots \in \Sigma$ add variables $X_{a}, X_{b}, X_{c}, \ldots$ with productions $X_{a} \rightarrow a, X_{b} \rightarrow b, \ldots$ Then replace the production $A \rightarrow B b C d e f G$ by $A \rightarrow B X_{b} C X_{d} X_{e} X_{f} G$

For every $a \in \Sigma$

1. Add a new variable X_{a}
2. In every rule, if a occurs in the RHS, replace it by X_{a}
3. Add a new rule $X_{a} \rightarrow a$

Make the RHS be of length 2

- Now all productions are of the form $A \rightarrow a$ or $A \rightarrow B_{1} B_{2} \cdots B_{n}$, where $n \geq 2$ and each B_{i} is a variable.
- How do you eliminate rules of the form $A \rightarrow B_{1} B_{2} \ldots B_{n}$ where $n>2$?
- Replace the rule by the following set of rules

$$
\begin{aligned}
& A \rightarrow B_{1} B_{(2, n)} \\
& B_{(2, n)} \rightarrow B_{2} B_{(3, n)} \\
& B_{(3, n)} \rightarrow B_{3} B_{(4, n)} \\
& \vdots \\
& \\
& B_{(n-1, n)} \rightarrow B_{n-1} B_{n}
\end{aligned}
$$

where $B_{(i, n)}$ are "new" variables.

An Example

Example 3. Convert: $S \rightarrow a A|b B| b, A \rightarrow B a a|b a, B \rightarrow b A A b| a b$, into Chomsky Normal Form.

1. Eliminate ϵ-productions, unit productions, and useless symbols. This grammar is already in the right form.
2. Remove terminals from the RHS of long rules. New grammar is: $X_{a} \rightarrow a, X_{b} \rightarrow b, S \rightarrow$ $X_{a} A\left|X_{b} B\right| b, A \rightarrow B X_{a} X_{a} \mid X_{b} X_{a}$, and $B \rightarrow X_{b} A A X_{b} \mid X_{a} X_{b}$
3. Reduce the RHS of rules to be of length at most two. New grammar replaces $A \rightarrow B X_{a} X_{a}$ by rules $A \rightarrow B X_{a a}, X_{a a} \rightarrow X_{a} X_{a}$, and $B \rightarrow X_{b} A A X_{b}$ by rules $B \rightarrow X_{b} X_{A A b}, X_{A A b} \rightarrow A X_{A b}$, $X_{A b} \rightarrow A X_{b}$

2 Closure Properties

2.1 Regular Operations

Union of CFLs

Proposition 4. If L_{1} and L_{2} are context-free languages then $L_{1} \cup L_{2}$ is also context-free.
Proof. Let L_{1} be language recognized by $G_{1}=\left(V_{1}, \Sigma, R_{1}, S_{1}\right)$ and L_{2} the language recognized by $G_{2}=\left(V_{2}, \Sigma, R_{2}, S_{2}\right)$. Assume that $V_{1} \cap V_{2}=\emptyset$; if this assumption is not true, rename the variables of one of the grammars to make this condition true.

We will construct a grammar $G=(V, \Sigma, R, S)$ such that $\mathbf{L}(G)=\mathbf{L}\left(G_{1}\right) \cup \mathbf{L}\left(G_{2}\right)$ as follows.

- $V=V_{1} \cup V_{2} \cup\{S\}$, where $S \notin V_{1} \cup V_{2}$ (and $V_{1} \cap V_{2}=\emptyset$)
- $R=R_{1} \cup R_{2} \cup\left\{S \rightarrow S_{1} \mid S_{2}\right\}$

We need to show that $\mathbf{L}(G)=\mathbf{L}\left(G_{1}\right) \cup \mathbf{L}\left(G_{2}\right)$. Consider $w \in \mathbf{L}(G)$. That means there is a derivation $S \stackrel{*}{\Rightarrow}_{G} w$. Since the only rules involving S are $S \rightarrow S_{1}$ and $S \rightarrow S_{2}$, this derivation is either of the form $S \Rightarrow_{G} S_{1} \stackrel{*}{\Rightarrow}_{G} w$ or $S \Rightarrow_{G} S_{2} \stackrel{*}{\Rightarrow}_{G} w$. Consider the first case. Since the only rules for variables in V_{1} are those belonging to R_{1} and since $S_{1} \stackrel{*}{\Rightarrow}_{G} w$, we have $S_{1} \stackrel{*}{\Rightarrow}_{G_{1}} w$, and so $w \in L_{1}=\mathbf{L}\left(G_{1}\right)$. If the derivation $S \stackrel{*}{*}_{G} w$ is of the form $S \Rightarrow_{G} S_{2} \stackrel{*}{\Rightarrow}_{G} w$, then by a similar reasoning we can conclude that $w \in \mathbf{L}\left(G_{2}\right)$. Hence if $w \in \mathbf{L}(G)$ then $w \in \mathbf{L}\left(G_{1}\right) \cup \mathbf{L}\left(G_{2}\right)$. Conversely, consider $w \in \mathbf{L}\left(G_{1}\right) \cup \mathbf{L}\left(G_{2}\right)$. Suppose $w \in \mathbf{L}\left(G_{1}\right)$; the case that $w \in \mathbf{L}\left(G_{2}\right)$ is similar and skipped. That means that $S_{1} \stackrel{*}{\Rightarrow}_{G_{1}} w$. Since $R_{1} \subseteq R$, we have $S_{1} \stackrel{*}{\Rightarrow}_{G} w$. Thus, we have $S \Rightarrow_{G} S_{1} \stackrel{*}{\Rightarrow}_{G} w$ which means that $w \in \mathbf{L}(G)$. This completes the proof.

Concatenation, Kleene Closure

Proposition 5. CFLs are closed under concatenation and Kleene closure
Proof. Let L_{1} be language generated by $G_{1}=\left(V_{1}, \Sigma, R_{1}, S_{1}\right)$ and L_{2} the language generated by $G_{2}=\left(V_{2}, \Sigma, R_{2}, S_{2}\right)$. As before we will assume that $V_{1} \cap V_{2}=\emptyset$.

Concatenation Let $G=(V, \Sigma, R, S)$ be such that $V=V_{1} \cup V_{2} \cup\{S\}$ (with $S \notin V_{1} \cup V_{2}$), and $R=R_{1} \cup R_{2} \cup\left\{S \rightarrow S_{1} S_{2}\right\}$. We will show that $\mathbf{L}(G)=\mathbf{L}\left(G_{1}\right) \mathbf{L}\left(G_{2}\right)$. Suppose $w \in \mathbf{L}(G)$. Then there is a leftmost derivation $S \stackrel{*}{\Rightarrow}{ }_{1 \mathrm{~m}}^{G} w$. The form such a derivation is $S \Rightarrow^{G} S_{1} S_{2} \stackrel{*}{\Rightarrow}{ }_{\operatorname{lm}}^{G}$ $w_{1} S_{2} \stackrel{*}{\Rightarrow}{ }_{\mathrm{lm}}^{G} w_{1} w_{2}=w$. Thus, $S_{1} \stackrel{*}{\Rightarrow}{ }_{\operatorname{lm}}^{G} w_{1}$ and $S_{2} \stackrel{*}{\Rightarrow}{ }_{\mathrm{lm}}^{G} w_{2}$. Since the rules in R restricted to V_{1} are R_{1} and restricted to V_{2} are R_{2}, we can conclude that $S_{1} \stackrel{*}{\Rightarrow}{ }_{\operatorname{lm}}^{G_{1}} w_{1}$ and $S_{2} \stackrel{*}{\Rightarrow}{ }_{\operatorname{lm}}^{G_{2}} w_{2}$. Thus, $w_{1} \in \mathbf{L}\left(G_{1}\right)$ and $w_{2} \in \mathbf{L}\left(G_{2}\right)$ and therefore, $w=w_{1} w_{2} \in \mathbf{L}\left(G_{1}\right) \mathbf{L}\left(G_{2}\right)$. On the other hand, if $w_{1} \in \mathbf{L}\left(G_{1}\right)$ and $w_{2} \in \mathbf{L}\left(G_{2}\right)$ then we have $S_{1} \stackrel{*}{\Rightarrow}_{G_{1}} w_{1}$ and $S_{2} \stackrel{*}{\Rightarrow}_{G_{2}} w_{2}$. Take $w=w_{1} w_{2} \in \mathbf{L}\left(G_{1}\right) \mathbf{L}\left(G_{2}\right)$. Now since $R_{1} \cup R_{2} \subseteq R$, we have $S_{1} \stackrel{*}{\Rightarrow}_{G} w_{1}$ and $S_{2} \stackrel{*}{\Rightarrow}_{G} w_{2}$. Therefore, we have, $S \Rightarrow_{G} S_{1} S_{2} \stackrel{*}{\Rightarrow}_{G} w_{1} S_{2} \stackrel{*}{\Rightarrow}_{G} w_{1} w_{2}=w$, and so $w \in \mathbf{L}(G)$.

Kleene Closure Let $G=\left(V=V_{1} \cup\{S\}, \Sigma, R=R_{1} \cup\left\{S \rightarrow S S_{1} \mid \epsilon\right\}, S\right)$, where $S \notin V_{1}$. We will show that $\mathbf{L}(G)=\left(\mathbf{L}\left(G_{1}\right)\right)^{*}$. We will show if $w \in \mathbf{L}(G)$ then $w \in\left(\mathbf{L}\left(G_{1}\right)\right)^{*}$ by induction on the length of the leftmost derivation of w. For the base case, consider w such that $S \Rightarrow{ }^{G} w$. Since $S \rightarrow \epsilon$ is the only rule for S whose right-hand side has terminals, this means that $w=\epsilon$. Further, $\epsilon \in\left(\mathbf{L}\left(G_{1}\right)\right)^{*}$ which establishes the base case. The induction hypothesis assumes that for all strings w, if $S \stackrel{*}{\Rightarrow}{ }_{\operatorname{lm}}^{G} w$ in $<n$ steps then $w \in\left(\mathbf{L}\left(G_{1}\right)\right)^{*}$. Consider w such that $S \stackrel{\text { 数 }}{G} w$ in n steps. Any leftmost derivation has the following form: $S \Rightarrow{ }^{G} S S_{1} \stackrel{*}{\Rightarrow}{ }_{\operatorname{lm}}^{G} w_{1} S_{1} \stackrel{*}{\Rightarrow}{ }_{\operatorname{lm}}^{G} w_{1} w_{2}=w$. Now we have $S \stackrel{*}{\Rightarrow}{ }_{\operatorname{lm}}^{G} w_{1}$ is $<n$ steps (because $S_{1} \stackrel{*}{\Rightarrow}{ }_{l \mathrm{~lm}} w_{2}$ takes at least one step), and $S_{1} \stackrel{*}{\Rightarrow}{ }_{\operatorname{lm}}^{G} w_{2}$. This means that $w_{1} \in\left(\mathbf{L}\left(G_{1}\right)\right)^{*}$ (by induction hypothesis) and $w_{2} \in \mathbf{L}\left(G_{1}\right)$ (since the only rules in R for variables in V_{1} are those belonging to R_{1}. Thus, $w=w_{1} w_{2} \in\left(\mathbf{L}\left(G_{1}\right)\right)^{*}$. For the converse, suppose $w \in\left(\mathbf{L}\left(G_{1}\right)\right)^{*}$. By definition, this means that there are $w_{1}, w_{2}, \ldots w_{n}($ for $n \geq 0)$ such that $w_{i} \in \mathbf{L}\left(G_{1}\right)$ for all i. Now if $n=0$ (i.e., $w=\epsilon$) then we have $S \Rightarrow_{G} w$ because $S \rightarrow \epsilon$ is a rule. Otherise, since $w_{i} \in \mathbf{L}\left(G_{1}\right)$, we have $S_{1} \stackrel{*}{\Rightarrow}_{G_{1}} w_{i}$, for each i. Since $R_{1} \subseteq R, S_{1} \stackrel{*}{\Rightarrow}_{G} w_{i}$. Hence we have the following derivation

$$
S \Rightarrow_{G} S S_{1} \Rightarrow_{G} S S S_{1} \Rightarrow_{G} \cdots \Rightarrow_{G} S\left(S_{1}\right)^{n} \Rightarrow_{G}\left(S_{1}\right)^{n} \stackrel{*}{\Rightarrow}_{G} w_{1}\left(S_{1}\right)^{n-1} \stackrel{*}{\Rightarrow}_{G} \cdots \stackrel{*}{\Rightarrow}_{G} w_{1} w_{2} \cdots w_{n}=w
$$

Intersection

Proposition 6. CFLs are not closed under intersection
Proof. - $L_{1}=\left\{a^{i} b^{i} c^{j} \mid i, j \geq 0\right\}$ is a CFL

- Generated by a grammar with rules $S \rightarrow X Y ; X \rightarrow a X b|\epsilon ; Y \rightarrow c Y| \epsilon$.
- $L_{2}=\left\{a^{i} b^{j} c^{j} \mid i, j \geq 0\right\}$ is a CFL.
- Generated by a grammar with rules $S \rightarrow X Y ; X \rightarrow a X|\epsilon ; Y \rightarrow b Y c| \epsilon$.
- But $L_{1} \cap L_{2}=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$, which we will see soon, is not a CFL.

Intersection with Regular Languages

Proposition 7. If L is a CFL and R is a regular language then $L \cap R$ is a CFL.
Proof. Let P be the PDA that accepts L, and let M be the DFA that accepts R. A new PDA P^{\prime} will simulate P and M simultaneously on the same input and accept if both accept. Then P^{\prime} accepts $L \cap R$.

- The stack of P^{\prime} is the stack of P
- The state of P^{\prime} at any time is the pair (state of P, state of M)
- These determine the transition function of P^{\prime}
- The final states of P^{\prime} are those in which both the state of P and state of M are accepting.

More formally, let $M=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ be a DFA such that $\mathbf{L}(M)=R$, and $P=\left(Q_{2}, \Sigma, \Gamma, \delta_{2}, q_{2}, F_{2}\right)$ be a PDA such that $\mathbf{L}(P)=L$. Then consider $P^{\prime}=\left(Q, \Sigma, \Gamma, \delta, q_{0}, F\right)$ such that

- $Q=Q_{1} \times Q_{2}$
- $q_{0}=\left(q_{1}, q_{2}\right)$
- $F=F_{1} \times F_{2}$

$$
\delta((p, q), x, a)= \begin{cases}\left\{\left(\left(p, q^{\prime}\right), b\right) \mid\left(q^{\prime}, b\right) \in \delta_{2}(q, x, a)\right\} & \text { when } x=\epsilon \\ \left\{\left(\left(p^{\prime}, q^{\prime}\right), b\right) \mid p^{\prime}=\delta_{1}(p, x) \text { and }\left(q^{\prime}, b\right) \in \delta_{2}(q, x, a)\right\} & \text { when } x \neq \epsilon\end{cases}
$$

One can show by induction on the number of computation steps, that for any $w \in \Sigma^{*}$

$$
\left\langle q_{0}, \epsilon\right\rangle \xrightarrow{w}_{P^{\prime}}\langle(p, q), \sigma\rangle \text { iff } q_{1} \xrightarrow{w}_{M} p \text { and }\left\langle q_{2}, \epsilon\right\rangle \xrightarrow{w}_{P}\langle q, \sigma\rangle
$$

The proof of this statement is left as an exercise. Now as a consequence, we have $w \in L\left(P^{\prime}\right)$ iff $\left\langle q_{0}, \epsilon\right\rangle \xrightarrow{w} P^{\prime}\langle(p, q), \sigma\rangle$ such that $(p, q) \in F$ (by definition of PDA acceptance) iff $\left\langle q_{0}, \epsilon\right\rangle \xrightarrow{w} P^{\prime}$ $\langle(p, q), \sigma\rangle$ such that $p \in F_{1}$ and $q \in F_{2}$ (by definition of F) iff $q_{1}{ }^{w}{ }_{M} p$ and $\left\langle q_{2}, \epsilon\right\rangle{ }^{w}{ }_{P}\langle q, \sigma\rangle$ and $p \in F_{1}$ and $q \in F_{2}$ (by the statement to be proved as exercise) iff $w \in L(M)$ and $w \in L(P)$ (by definition of DFA acceptance and PDA acceptance).

Why does this construction not work for intersection of two CFLs?

Complementation

Proposition 8. Context-free languages are not closed under complementation.
Proof. [Proof 1] Suppose CFLs were closed under complementation. Then for any two CFLs L_{1}, L_{2}, we have

- $\overline{L_{1}}$ and $\overline{L_{2}}$ are CFL. Then, since CFLs closed under union, $\overline{L_{1}} \cup \overline{L_{2}}$ is CFL. Then, again by hypothesis, $\overline{\overline{L_{1}} \cup \overline{L_{2}}}$ is CFL.
- i.e., $L_{1} \cap L_{2}$ is a $C F L$
i.e., CFLs are closed under intersection. Contradiction!
[Proof 2] $L=\{x \mid x$ not of the form $w w\}$ is a CFL.
- L generated by a grammar with rules $X \rightarrow a|b, A \rightarrow a| X A X, B \rightarrow b|X B X, S \rightarrow A| B|A B| B A$

But $\bar{L}=\left\{w w \mid w \in\{a, b\}^{*}\right\}$ we will see is not a CFL!

Set Difference

Proposition 9. If L_{1} is a CFL and L_{2} is a CFL then $L_{1} \backslash L_{2}$ is not necessarily a CFL
Proof. Because CFLs not closed under complementation, and complementation is a special case of set difference. (How?)

Proposition 10. If L is a $C F L$ and R is a regular language then $L \backslash R$ is a CFL
Proof. $L \backslash R=L \cap \bar{R}$

