
1 Chomsky Normal Form

Normal Forms for Grammars

It is typically easier to work with a context free language if given a CFG in a normal form.

Normal Forms
A grammar is in a normal form if its production rules have a special structure:

• Chomsky Normal Form: Productions are of the form A→ BC or A→ a, where A,B,C are
variables and a is a terminal symbol.

• Greibach Normal Form Productions are of the form A→ aα, where α ∈ V ∗ and A ∈ V .

If ε is in the language, we allow the rule S → ε. We will require that S does not appear on the
right hand side of any rules.

We will restrict our discussion to Chomsky Normal Form.
Main Result

Proposition 1. For any non-empty context-free language L, there is a grammar G, such that
L(G) = L and each rule in G is of the form

1. A→ a where a ∈ Σ, or

2. A→ BC where neither B nor C is the start symbol, or

3. S → ε where S is the start symbol (iff ε ∈ L)

Furthermore, G has no useless symbols.

Outline of Normalization

Given G = (V,Σ, S, P), convert to CNF

• Let G′ = (V ′,Σ, S, P ′) be the grammar obtained after eliminating ε-productions, unit pro-
ductions, and useless symbols from G.

• If A → x is a rule of G′, where |x| = 0, then A must be S (because G′ has no other ε-
productions). If A → x is a rule of G′, where |x| = 1, then x ∈ Σ (because G′ has no unit
productions). In either case A→ x is in a valid form.

• All remaining productions are of form A → X1X2 · · ·Xn where Xi ∈ V ′ ∪ Σ, n ≥ 2 (and
S does not occur in the RHS). We will put these rules in the right form by applying the
following two transformations:

1. Make the RHS consist only of variables

2. Make the RHS be of length 2.

1

Make the RHS consist only of variables

Let A → X1X2 · · ·Xn, with Xi being either a variable or a terminal. We want rules where all
the Xi are variables.

Example 2. Consider A→ BbCdefG. How do you remove the terminals?
For each a, b, c . . . ∈ Σ add variables Xa, Xb, Xc, . . . with productions Xa → a, Xb → b,

Then replace the production A→ BbCdefG by A→ BXbCXdXeXfG

For every a ∈ Σ

1. Add a new variable Xa

2. In every rule, if a occurs in the RHS, replace it by Xa

3. Add a new rule Xa → a

Make the RHS be of length 2

• Now all productions are of the form A→ a or A→ B1B2 · · ·Bn, where n ≥ 2 and each Bi is
a variable.

• How do you eliminate rules of the form A→ B1B2 . . . Bn where n > 2?

• Replace the rule by the following set of rules

A → B1B(2,n)

B(2,n) → B2B(3,n)

B(3,n) → B3B(4,n)

...

B(n−1,n) → Bn−1Bn

where B(i,n) are “new” variables.

An Example

Example 3. Convert: S → aA|bB|b, A→ Baa|ba, B → bAAb|ab, into Chomsky Normal Form.

1. Eliminate ε-productions, unit productions, and useless symbols. This grammar is already in
the right form.

2. Remove terminals from the RHS of long rules. New grammar is: Xa → a, Xb → b, S →
XaA|XbB|b, A→ BXaXa|XbXa, and B → XbAAXb|XaXb

3. Reduce the RHS of rules to be of length at most two. New grammar replaces A→ BXaXa by
rules A → BXaa, Xaa → XaXa, and B → XbAAXb by rules B → XbXAAb, XAAb → AXAb,
XAb → AXb

2

2 Closure Properties

2.1 Regular Operations

Union of CFLs

Proposition 4. If L1 and L2 are context-free languages then L1 ∪ L2 is also context-free.

Proof. Let L1 be language recognized by G1 = (V1,Σ, R1, S1) and L2 the language recognized by
G2 = (V2,Σ, R2, S2). Assume that V1 ∩ V2 = ∅; if this assumption is not true, rename the variables
of one of the grammars to make this condition true.

We will construct a grammar G = (V,Σ, R, S) such that L(G) = L(G1) ∪ L(G2) as follows.

• V = V1 ∪ V2 ∪ {S}, where S 6∈ V1 ∪ V2 (and V1 ∩ V2 = ∅)

• R = R1 ∪R2 ∪ {S → S1|S2}

We need to show that L(G) = L(G1) ∪ L(G2). Consider w ∈ L(G). That means there is a

derivation S
∗⇒G w. Since the only rules involving S are S → S1 and S → S2, this derivation

is either of the form S ⇒G S1
∗⇒G w or S ⇒G S2

∗⇒G w. Consider the first case. Since the
only rules for variables in V1 are those belonging to R1 and since S1

∗⇒G w, we have S1
∗⇒G1 w,

and so w ∈ L1 = L(G1). If the derivation S
∗⇒G w is of the form S ⇒G S2

∗⇒G w, then by a
similar reasoning we can conclude that w ∈ L(G2). Hence if w ∈ L(G) then w ∈ L(G1) ∪ L(G2).
Conversely, consider w ∈ L(G1) ∪ L(G2). Suppose w ∈ L(G1); the case that w ∈ L(G2) is similar

and skipped. That means that S1
∗⇒G1 w. Since R1 ⊆ R, we have S1

∗⇒G w. Thus, we have

S ⇒G S1
∗⇒G w which means that w ∈ L(G). This completes the proof.

Concatenation, Kleene Closure

Proposition 5. CFLs are closed under concatenation and Kleene closure

Proof. Let L1 be language generated by G1 = (V1,Σ, R1, S1) and L2 the language generated by
G2 = (V2,Σ, R2, S2). As before we will assume that V1 ∩ V2 = ∅.

Concatenation Let G = (V,Σ, R, S) be such that V = V1 ∪ V2 ∪ {S} (with S 6∈ V1 ∪ V2), and
R = R1 ∪ R2 ∪ {S → S1S2}. We will show that L(G) = L(G1)L(G2). Suppose w ∈ L(G).

Then there is a leftmost derivation S
∗⇒
G

lm w. The form such a derivation is S ⇒G S1S2
∗⇒
G

lm

w1S2
∗⇒
G

lm w1w2 = w. Thus, S1
∗⇒
G

lm w1 and S2
∗⇒
G

lm w2. Since the rules in R restricted to

V1 are R1 and restricted to V2 are R2, we can conclude that S1
∗⇒
G1

lm w1 and S2
∗⇒
G2

lm w2.
Thus, w1 ∈ L(G1) and w2 ∈ L(G2) and therefore, w = w1w2 ∈ L(G1)L(G2). On the other

hand, if w1 ∈ L(G1) and w2 ∈ L(G2) then we have S1
∗⇒G1 w1 and S2

∗⇒G2 w2. Take

w = w1w2 ∈ L(G1)L(G2). Now since R1 ∪ R2 ⊆ R, we have S1
∗⇒G w1 and S2

∗⇒G w2.

Therefore, we have, S ⇒G S1S2
∗⇒G w1S2

∗⇒G w1w2 = w, and so w ∈ L(G).

3

Kleene Closure Let G = (V = V1 ∪ {S},Σ, R = R1 ∪ {S → SS1 | ε}, S), where S 6∈ V1. We will
show that L(G) = (L(G1))

∗. We will show if w ∈ L(G) then w ∈ (L(G1))
∗ by induction

on the length of the leftmost derivation of w. For the base case, consider w such that
S ⇒G w. Since S → ε is the only rule for S whose right-hand side has terminals, this
means that w = ε. Further, ε ∈ (L(G1))

∗ which establishes the base case. The induction

hypothesis assumes that for all strings w, if S
∗⇒
G

lm w in < n steps then w ∈ (L(G1))
∗.

Consider w such that S
∗⇒
G

lm w in n steps. Any leftmost derivation has the following form:

S ⇒G SS1
∗⇒
G

lm w1S1
∗⇒
G

lm w1w2 = w. Now we have S
∗⇒
G

lm w1 is < n steps (because

S1
∗⇒
G

lm w2 takes at least one step), and S1
∗⇒
G

lm w2. This means that w1 ∈ (L(G1))
∗ (by

induction hypothesis) and w2 ∈ L(G1) (since the only rules in R for variables in V1 are those
belonging to R1). Thus, w = w1w2 ∈ (L(G1))

∗. For the converse, suppose w ∈ (L(G1))
∗. By

definition, this means that there are w1, w2, . . . wn (for n ≥ 0) such that wi ∈ L(G1) for all
i. Now if n = 0 (i.e., w = ε) then we have S ⇒G w because S → ε is a rule. Otherise, since

wi ∈ L(G1), we have S1
∗⇒G1 wi, for each i. Since R1 ⊆ R, S1

∗⇒G wi. Hence we have the
following derivation

S ⇒G SS1 ⇒G SSS1 ⇒G · · · ⇒G S(S1)
n ⇒G (S1)

n ∗⇒G w1(S1)
n−1 ∗⇒G · · ·

∗⇒G w1w2 · · ·wn = w

Intersection

Proposition 6. CFLs are not closed under intersection

Proof. • L1 = {aibicj | i, j ≥ 0} is a CFL

– Generated by a grammar with rules S → XY ; X → aXb|ε; Y → cY |ε.

• L2 = {aibjcj | i, j ≥ 0} is a CFL.

– Generated by a grammar with rules S → XY ; X → aX|ε; Y → bY c|ε.

• But L1 ∩ L2 = {anbncn | n ≥ 0}, which we will see soon, is not a CFL.

Intersection with Regular Languages

Proposition 7. If L is a CFL and R is a regular language then L ∩R is a CFL.

Proof. Let P be the PDA that accepts L, and let M be the DFA that accepts R. A new PDA
P ′ will simulate P and M simultaneously on the same input and accept if both accept. Then P ′

accepts L ∩R.

• The stack of P ′ is the stack of P

• The state of P ′ at any time is the pair (state of P , state of M)

4

• These determine the transition function of P ′

• The final states of P ′ are those in which both the state of P and state of M are accepting.

More formally, letM = (Q1,Σ, δ1, q1, F1) be a DFA such that L(M) = R, and P = (Q2,Σ,Γ, δ2, q2, F2)
be a PDA such that L(P) = L. Then consider P ′ = (Q,Σ,Γ, δ, q0, F) such that

• Q = Q1 ×Q2

• q0 = (q1, q2)

• F = F1 × F2

δ((p, q), x, a) =

{
{((p, q′), b) | (q′, b) ∈ δ2(q, x, a)} when x = ε
{((p′, q′), b) | p′ = δ1(p, x) and (q′, b) ∈ δ2(q, x, a)} when x 6= ε

One can show by induction on the number of computation steps, that for any w ∈ Σ∗

〈q0, ε〉
w−→P ′ 〈(p, q), σ〉 iff q1

w−→M p and 〈q2, ε〉
w−→P 〈q, σ〉

The proof of this statement is left as an exercise. Now as a consequence, we have w ∈ L(P ′)
iff 〈q0, ε〉

w−→P ′ 〈(p, q), σ〉 such that (p, q) ∈ F (by definition of PDA acceptance) iff 〈q0, ε〉
w−→P ′

〈(p, q), σ〉 such that p ∈ F1 and q ∈ F2 (by definition of F) iff q1
w−→M p and 〈q2, ε〉

w−→P 〈q, σ〉 and
p ∈ F1 and q ∈ F2 (by the statement to be proved as exercise) iff w ∈ L(M) and w ∈ L(P) (by
definition of DFA acceptance and PDA acceptance).

Why does this construction not work for intersection of two CFLs?

Complementation

Proposition 8. Context-free languages are not closed under complementation.

Proof. [Proof 1] Suppose CFLs were closed under complementation. Then for any two CFLs L1,
L2, we have

• L1 and L2 are CFL. Then, since CFLs closed under union, L1 ∪ L2 is CFL. Then, again by

hypothesis, L1 ∪ L2 is CFL.

• i.e., L1 ∩ L2 is a CFL

i.e., CFLs are closed under intersection. Contradiction!
[Proof 2] L = {x | x not of the form ww} is a CFL.

• L generated by a grammar with rules X → a|b, A→ a|XAX, B → b|XBX, S → A|B|AB|BA

But L = {ww | w ∈ {a, b}∗} we will see is not a CFL!

Set Difference

5

Proposition 9. If L1 is a CFL and L2 is a CFL then L1 \ L2 is not necessarily a CFL

Proof. Because CFLs not closed under complementation, and complementation is a special case of
set difference. (How?)

Proposition 10. If L is a CFL and R is a regular language then L \R is a CFL

Proof. L \R = L ∩R

6

	Chomsky Normal Form
	Closure Properties
	Regular Operations

