1 Chomsky Normal Form

Normal Forms for Grammars

It is typically easier to work with a context free language if given a CFG in a normal form.

Normal Forms

A grammar is in a normal form if its production rules have a special structure:

- Chomsky Normal Form: Productions are of the form $A \to BC$ or $A \to a$, where A, B, C are variables and a is a terminal symbol.
- Greibach Normal Form Productions are of the form $A \to a\alpha$, where $\alpha \in V^*$ and $A \in V$.

If ϵ is in the language, we allow the rule $S \to \epsilon$. We will require that S does not appear on the right hand side of any rules.

We will restrict our discussion to Chomsky Normal Form. ______ Main Result

Proposition 1. For any non-empty context-free language L, there is a grammar G, such that L(G) = L and each rule in G is of the form

- 1. $A \rightarrow a$ where $a \in \Sigma$, or
- 2. $A \rightarrow BC$ where neither B nor C is the start symbol, or
- 3. $S \to \epsilon$ where S is the start symbol (iff $\epsilon \in L$)

Furthermore, G has no useless symbols.

Outline of Normalization

Given $G = (V, \Sigma, S, P)$, convert to CNF

- Let $G' = (V', \Sigma, S, P')$ be the grammar obtained after eliminating ϵ -productions, unit productions, and useless symbols from G.
- If $A \to x$ is a rule of G', where |x| = 0, then A must be S (because G' has no other ϵ -productions). If $A \to x$ is a rule of G', where |x| = 1, then $x \in \Sigma$ (because G' has no unit productions). In either case $A \to x$ is in a valid form.
- All remaining productions are of form $A \to X_1 X_2 \cdots X_n$ where $X_i \in V' \cup \Sigma$, $n \ge 2$ (and S does not occur in the RHS). We will put these rules in the right form by applying the following two transformations:
 - 1. Make the RHS consist only of variables
 - 2. Make the RHS be of length 2.

Make the RHS consist only of variables

Let $A \to X_1 X_2 \cdots X_n$, with X_i being either a variable or a terminal. We want rules where all the X_i are variables.

Example 2. Consider $A \to BbCdefG$. How do you remove the terminals?

For each $a, b, c... \in \Sigma$ add variables $X_a, X_b, X_c, ...$ with productions $X_a \to a, X_b \to b, ...$ Then replace the production $A \to BbCdefG$ by $A \to BX_bCX_dX_eX_fG$

For every $a \in \Sigma$

- 1. Add a new variable X_a
- 2. In every rule, if a occurs in the RHS, replace it by X_a
- 3. Add a new rule $X_a \to a$

Make the RHS be of length 2

- Now all productions are of the form $A \to a$ or $A \to B_1 B_2 \cdots B_n$, where $n \ge 2$ and each B_i is a variable.
- How do you eliminate rules of the form $A \to B_1 B_2 \dots B_n$ where n > 2?
- Replace the rule by the following set of rules

$$\begin{array}{rcccc} A & \rightarrow & B_1 B_{(2,n)} \\ B_{(2,n)} & \rightarrow & B_2 B_{(3,n)} \\ B_{(3,n)} & \rightarrow & B_3 B_{(4,n)} \\ & & \vdots \\ B_{(n-1,n)} & \rightarrow & B_{n-1} B_n \end{array}$$

where $B_{(i,n)}$ are "new" variables.

An Example

Example 3. Convert: $S \to aA|bB|b, A \to Baa|ba, B \to bAAb|ab$, into Chomsky Normal Form.

- 1. Eliminate ϵ -productions, unit productions, and useless symbols. This grammar is already in the right form.
- 2. Remove terminals from the RHS of long rules. New grammar is: $X_a \to a, X_b \to b, S \to X_a A | X_b B | b, A \to B X_a X_a | X_b X_a$, and $B \to X_b A A X_b | X_a X_b$
- 3. Reduce the RHS of rules to be of length at most two. New grammar replaces $A \to BX_aX_a$ by rules $A \to BX_{aa}$, $X_{aa} \to X_aX_a$, and $B \to X_bAAX_b$ by rules $B \to X_bX_{AAb}$, $X_{AAb} \to AX_{Ab}$, $X_{Ab} \to AX_b$

2 Closure Properties

2.1 Regular Operations

Union of CFLs

Proposition 4. If L_1 and L_2 are context-free languages then $L_1 \cup L_2$ is also context-free.

Proof. Let L_1 be language recognized by $G_1 = (V_1, \Sigma, R_1, S_1)$ and L_2 the language recognized by $G_2 = (V_2, \Sigma, R_2, S_2)$. Assume that $V_1 \cap V_2 = \emptyset$; if this assumption is not true, rename the variables of one of the grammars to make this condition true.

We will construct a grammar $G = (V, \Sigma, R, S)$ such that $\mathbf{L}(G) = \mathbf{L}(G_1) \cup \mathbf{L}(G_2)$ as follows.

- $V = V_1 \cup V_2 \cup \{S\}$, where $S \notin V_1 \cup V_2$ (and $V_1 \cap V_2 = \emptyset$)
- $R = R_1 \cup R_2 \cup \{S \to S_1 | S_2\}$

We need to show that $\mathbf{L}(G) = \mathbf{L}(G_1) \cup \mathbf{L}(G_2)$. Consider $w \in \mathbf{L}(G)$. That means there is a derivation $S \stackrel{*}{\Rightarrow}_G w$. Since the only rules involving S are $S \to S_1$ and $S \to S_2$, this derivation is either of the form $S \Rightarrow_G S_1 \stackrel{*}{\Rightarrow}_G w$ or $S \Rightarrow_G S_2 \stackrel{*}{\Rightarrow}_G w$. Consider the first case. Since the only rules for variables in V_1 are those belonging to R_1 and since $S_1 \stackrel{*}{\Rightarrow}_G w$, we have $S_1 \stackrel{*}{\Rightarrow}_{G_1} w$, and so $w \in L_1 = \mathbf{L}(G_1)$. If the derivation $S \stackrel{*}{\Rightarrow}_G w$ is of the form $S \Rightarrow_G S_2 \stackrel{*}{\Rightarrow}_G w$, then by a similar reasoning we can conclude that $w \in \mathbf{L}(G_2)$. Hence if $w \in \mathbf{L}(G)$ then $w \in \mathbf{L}(G_1) \cup \mathbf{L}(G_2)$. Conversely, consider $w \in \mathbf{L}(G_1) \cup \mathbf{L}(G_2)$. Suppose $w \in \mathbf{L}(G_1)$; the case that $w \in \mathbf{L}(G_2)$ is similar and skipped. That means that $S_1 \stackrel{*}{\Rightarrow}_{G_1} w$. Since $R_1 \subseteq R$, we have $S_1 \stackrel{*}{\Rightarrow}_G w$. Thus, we have $S \Rightarrow_G S_1 \stackrel{*}{\Rightarrow}_G w$ which means that $w \in \mathbf{L}(G)$. This completes the proof.

Concatenation, Kleene Closure

Proposition 5. CFLs are closed under concatenation and Kleene closure

Proof. Let L_1 be language generated by $G_1 = (V_1, \Sigma, R_1, S_1)$ and L_2 the language generated by $G_2 = (V_2, \Sigma, R_2, S_2)$. As before we will assume that $V_1 \cap V_2 = \emptyset$.

Concatenation Let $G = (V, \Sigma, R, S)$ be such that $V = V_1 \cup V_2 \cup \{S\}$ (with $S \notin V_1 \cup V_2$), and $R = R_1 \cup R_2 \cup \{S \to S_1S_2\}$. We will show that $\mathbf{L}(G) = \mathbf{L}(G_1)\mathbf{L}(G_2)$. Suppose $w \in \mathbf{L}(G)$. Then there is a leftmost derivation $S \stackrel{*}{\Rightarrow}_{\mathrm{lm}}^G w$. The form such a derivation is $S \Rightarrow^G S_1S_2 \stackrel{*}{\Rightarrow}_{\mathrm{lm}}^G w_1S_2 \stackrel{*}{\Rightarrow}_{\mathrm{lm}}^G w_1w_2 = w$. Thus, $S_1 \stackrel{*}{\Rightarrow}_{\mathrm{lm}}^G w_1$ and $S_2 \stackrel{*}{\Rightarrow}_{\mathrm{lm}}^G w_2$. Since the rules in R restricted to V_1 are R_1 and restricted to V_2 are R_2 , we can conclude that $S_1 \stackrel{*}{\Rightarrow}_{\mathrm{lm}}^{G_1} w_1$ and $S_2 \stackrel{*}{\Rightarrow}_{\mathrm{lm}}^{G_2} w_2$. Thus, $w_1 \in \mathbf{L}(G_1)$ and $w_2 \in \mathbf{L}(G_2)$ and therefore, $w = w_1w_2 \in \mathbf{L}(G_1)\mathbf{L}(G_2)$. On the other hand, if $w_1 \in \mathbf{L}(G_1)\mathbf{L}(G_2)$. Now since $R_1 \cup R_2 \subseteq R$, we have $S_1 \stackrel{*}{\Rightarrow}_G w_1$ and $S_2 \stackrel{*}{\Rightarrow}_G w_2$. Therefore, we have, $S \Rightarrow_G S_1S_2 \stackrel{*}{\Rightarrow}_G w_1S_2 \stackrel{*}{\Rightarrow}_G w_1w_2 = w$, and so $w \in \mathbf{L}(G)$.

Kleene Closure Let $G = (V = V_1 \cup \{S\}, \Sigma, R = R_1 \cup \{S \to SS_1 \mid \epsilon\}, S)$, where $S \notin V_1$. We will show that $\mathbf{L}(G) = (\mathbf{L}(G_1))^*$. We will show if $w \in \mathbf{L}(G)$ then $w \in (\mathbf{L}(G_1))^*$ by induction on the length of the leftmost derivation of w. For the base case, consider w such that $S \Rightarrow^G w$. Since $S \to \epsilon$ is the only rule for S whose right-hand side has terminals, this means that $w = \epsilon$. Further, $\epsilon \in (\mathbf{L}(G_1))^*$ which establishes the base case. The induction hypothesis assumes that for all strings w, if $S \Rightarrow^{*G}_{\mathrm{Im}} w$ in < n steps then $w \in (\mathbf{L}(G_1))^*$. Consider w such that $S \Rightarrow^{G}_{\mathrm{Im}} w$ in n steps. Any leftmost derivation has the following form: $S \Rightarrow^G SS_1 \Rightarrow^G_{\mathrm{Im}} w_1S_1 \Rightarrow^G_{\mathrm{Im}} w_1w_2 = w$. Now we have $S \Rightarrow^G_{\mathrm{Im}} w_1$ is < n steps (because $S_1 \Rightarrow^G_{\mathrm{Im}} w_2$ takes at least one step), and $S_1 \Rightarrow^G_{\mathrm{Im}} w_2$. This means that $w_1 \in (\mathbf{L}(G_1))^*$ (by induction hypothesis) and $w_2 \in \mathbf{L}(G_1)$ (since the only rules in R for variables in V_1 are those belonging to R_1). Thus, $w = w_1w_2 \in (\mathbf{L}(G_1))^*$. For the converse, suppose $w \in (\mathbf{L}(G_1))^*$. By definition, this means that there are $w_1, w_2, \ldots w_n$ (for $n \ge 0$) such that $w_i \in \mathbf{L}(G_1)$ for all i. Now if n = 0 (i.e., $w = \epsilon$) then we have $S \Rightarrow_G w$ because $S \to \epsilon$ is a rule. Otherise, since $w_i \in \mathbf{L}(G_1)$, we have $S_1 \Rightarrow^*_{G_1} w_i$, for each i. Since $R_1 \subseteq R$, $S_1 \Rightarrow^*_{G} w_i$. Hence we have the following derivation

$$S \Rightarrow_G SS_1 \Rightarrow_G SSS_1 \Rightarrow_G \dots \Rightarrow_G S(S_1)^n \Rightarrow_G (S_1)^n \stackrel{*}{\Rightarrow}_G w_1(S_1)^{n-1} \stackrel{*}{\Rightarrow}_G \dots \stackrel{*}{\Rightarrow}_G w_1w_2 \dots w_n = w_n$$

Intersection

Proposition 6. CFLs are not closed under intersection

Proof. • $L_1 = \{a^i b^i c^j \mid i, j \ge 0\}$ is a CFL

- Generated by a grammar with rules $S \to XY$; $X \to aXb|\epsilon$; $Y \to cY|\epsilon$.
- $L_2 = \{a^i b^j c^j \mid i, j \ge 0\}$ is a CFL.
 - Generated by a grammar with rules $S \to XY$; $X \to aX|\epsilon$; $Y \to bYc|\epsilon$.
- But $L_1 \cap L_2 = \{a^n b^n c^n \mid n \ge 0\}$, which we will see soon, is not a CFL.

Intersection with Regular Languages

Proposition 7. If L is a CFL and R is a regular language then $L \cap R$ is a CFL.

Proof. Let P be the PDA that accepts L, and let M be the DFA that accepts R. A new PDA P' will simulate P and M simultaneously on the same input and accept if both accept. Then P' accepts $L \cap R$.

- The stack of P' is the stack of P
- The state of P' at any time is the pair (state of P, state of M)

- These determine the transition function of P'
- The final states of P' are those in which both the state of P and state of M are accepting.

More formally, let $M = (Q_1, \Sigma, \delta_1, q_1, F_1)$ be a DFA such that $\mathbf{L}(M) = R$, and $P = (Q_2, \Sigma, \Gamma, \delta_2, q_2, F_2)$ be a PDA such that $\mathbf{L}(P) = L$. Then consider $P' = (Q, \Sigma, \Gamma, \delta, q_0, F)$ such that

- $Q = Q_1 \times Q_2$
- $q_0 = (q_1, q_2)$
- $F = F_1 \times F_2$

$$\delta((p,q),x,a) = \begin{cases} \{((p,q'),b) \mid (q',b) \in \delta_2(q,x,a)\} & \text{when } x = \epsilon \\ \{((p',q'),b) \mid p' = \delta_1(p,x) \text{ and } (q',b) \in \delta_2(q,x,a)\} & \text{when } x \neq \epsilon \end{cases}$$

One can show by induction on the number of computation steps, that for any $w \in \Sigma^*$

$$\langle q_0,\epsilon\rangle \xrightarrow{w}_{P'} \langle (p,q),\sigma\rangle$$
 iff $q_1 \xrightarrow{w}_M p$ and $\langle q_2,\epsilon\rangle \xrightarrow{w}_P \langle q,\sigma\rangle$

The proof of this statement is left as an exercise. Now as a consequence, we have $w \in L(P')$ iff $\langle q_0, \epsilon \rangle \xrightarrow{w}_{P'} \langle (p,q), \sigma \rangle$ such that $(p,q) \in F$ (by definition of PDA acceptance) iff $\langle q_0, \epsilon \rangle \xrightarrow{w}_{P'} \langle (p,q), \sigma \rangle$ such that $p \in F_1$ and $q \in F_2$ (by definition of F) iff $q_1 \xrightarrow{w}_M p$ and $\langle q_2, \epsilon \rangle \xrightarrow{w}_P \langle q, \sigma \rangle$ and $p \in F_1$ and $q \in F_2$ (by the statement to be proved as exercise) iff $w \in L(M)$ and $w \in L(P)$ (by definition of DFA acceptance and PDA acceptance).

Why does this construction not work for intersection of two CFLs?

Complementation

Proposition 8. Context-free languages are not closed under complementation.

Proof. [**Proof 1**] Suppose CFLs were closed under complementation. Then for any two CFLs L_1 , L_2 , we have

- $\overline{L_1}$ and $\overline{L_2}$ are CFL. Then, since CFLs closed under union, $\overline{L_1} \cup \overline{L_2}$ is CFL. Then, again by hypothesis, $\overline{\overline{L_1} \cup \overline{L_2}}$ is CFL.
- i.e., $L_1 \cap L_2$ is a CFL

i.e., CFLs are closed under intersection. Contradiction!

[Proof 2] $L = \{x \mid x \text{ not of the form } ww\}$ is a CFL.

• L generated by a grammar with rules $X \to a|b, A \to a|XAX, B \to b|XBX, S \to A|B|AB|BA$

But $\overline{L} = \{ww \mid w \in \{a, b\}^*\}$ we will see is not a CFL!

Set Difference

Proposition 9. If L_1 is a CFL and L_2 is a CFL then $L_1 \setminus L_2$ is not necessarily a CFL

Proof. Because CFLs not closed under complementation, and complementation is a special case of set difference. (How?)

Proposition 10. If L is a CFL and R is a regular language then $L \setminus R$ is a CFL

Proof. $L \setminus R = L \cap \overline{R}$