1 Chomsky Normal Form

Normal Forms for Grammars

It is typically easier to work with a context free language if given a CFG in a normal form.

Normal Forms
A grammar is in a normal form if its production rules have a special structure:

e Chomsky Normal Form: Productions are of the form A — BC or A — a, where A, B,C are
variables and a is a terminal symbol.

e Greibach Normal Form Productions are of the form A — aca, where « € V* and A € V.

If € is in the language, we allow the rule S — e¢. We will require that S does not appear on the
right hand side of any rules.

We will restrict our discussion to Chomsky Normal Form.
Main Result

Proposition 1. For any non-empty context-free language L, there is a grammar G, such that
L(G) = L and each rule in G is of the form

1. A — a wherea € X, or
2. A — BC where neither B nor C is the start symbol, or
3. S — € where S is the start symbol (iff € € L)

Furthermore, G has no useless symbols.

Outline of Normalization

Given G = (V, X, S, P), convert to CNF

e Let G' = (V' X, S, P') be the grammar obtained after eliminating e-productions, unit pro-
ductions, and useless symbols from G.

o If A — x is a rule of G', where |z| = 0, then A must be S (because G’ has no other e-
productions). If A — x is a rule of G’, where |z| = 1, then € ¥ (because G’ has no unit
productions). In either case A — x is in a valid form.

e All remaining productions are of form A — X;X5--- X, where X; € V'UX, n > 2 (and
S does not occur in the RHS). We will put these rules in the right form by applying the
following two transformations:

1. Make the RHS consist only of variables
2. Make the RHS be of length 2.



Make the RHS consist only of variables

Let A — X1 Xo---X,, with X; being either a variable or a terminal. We want rules where all
the X, are variables.

Ezxample 2. Consider A — BbCdefG. How do you remove the terminals?
For each a,b,c... € ¥ add variables X,, Xp, X, ... with productions X, — a, X — b, ....
Then replace the production A — BbC'defG by A = BX,CXgX X G

For every a € X
1. Add a new variable X,

2. In every rule, if a occurs in the RHS, replace it by X,

3. Add a new rule X, — a

Make the RHS be of length 2

e Now all productions are of the form A — a or A — B1Bs--- By, where n > 2 and each B; is
a variable.

e How do you eliminate rules of the form A — By B> ... B, where n > 27

e Replace the rule by the following set of rules

A — Bl B(Q,n)
Bin — B2B@ap)
Bian — B3Bun

B(n—lm,) — B,_1B,

where B(; ) are “new” variables.

An Example

Ezample 3. Convert: S — aA|bB|b, A — Baalba, B — bAAb|ab, into Chomsky Normal Form.

1. Eliminate e-productions, unit productions, and useless symbols. This grammar is already in
the right form.

2. Remove terminals from the RHS of long rules. New grammar is: X, — a, X — b, § —
X A|XpBlb, A = BX,Xy|XpX,, and B — Xp AAX| X X

3. Reduce the RHS of rules to be of length at most two. New grammar replaces A — BX,X, by
rules A = BX,4, Xoo = XoXqa, and B — Xp AAX, by rules B — Xp X a4p, Xaap — AX ap,
XAb — AXb




2 Closure Properties

2.1 Regular Operations
Union of CFLs

Proposition 4. If L1 and Lo are context-free languages then L1 U Lo is also context-free.

Proof. Let L; be language recognized by G = (V1,%, Ry, 51) and Ly the language recognized by
Go = (Vo,%, Re, S2). Assume that V4 NV; = (); if this assumption is not true, rename the variables
of one of the grammars to make this condition true.

We will construct a grammar G = (V, %, R, S) such that L(G) = L(G1) UL(G2) as follows.

o V=ViUV,U{S}, where S ¢ V1 UV; (and V4 NV = 0)
° R:RlURQU{S—%SﬂSQ}

We need to show that L(G) = L(G1) UL(G2). Consider w € L(G). That means there is a
derivation S =¢ w. Since the only rules involving S are S — S; and S — S, this derivation
is either of the form S =g S; =¢ w or S =¢ S =¢ w. Consider the first case. Since the
only rules for variables in V; are those belonging to R; and since S 2 w, we have S; :*>G1 w,
and so w € L; = L(Gy). If the derivation S 2 w is of the form S =¢ Sy =¢ w, then by a
similar reasoning we can conclude that w € L(G2). Hence if w € L(G) then w € L(G1) U L(G2).
Conversely, consider w € L(G1) UL(G2). Suppose w € L(G1); the case that w € L(G3) is similar
and skipped. That means that S :*>G1 w. Since 1 C R, we have Sp :*>G w. Thus, we have
S =@ S1 =g w which means that w € L(G). This completes the proof. O

Concatenation, Kleene Closure

Proposition 5. CFLs are closed under concatenation and Kleene closure

Proof. Let Ly be language generated by G; = (V1,%, Ry, S1) and Lo the language generated by
Go = (V2,%, Ro, So). As before we will assume that V3 NV, = 0.

Concatenation Let G = (V,X, R, S) be such that V = V3 UV, U {S} (with S ¢ V; U V3), and
R =Ry URyU{S — 5152}. We will show that L(G) = L(G1)L(G2). Suppose w € L(G).

Then there is a leftmost derivation S = w. The form such a derivation is S =% 1Sy =

G G G . . .
w199 :*>1m wiwg = w. Thus, S7 :*>1m w1 and So :*>1m wsg. Since the rules in R restricted to
. G1 Go
Vi are R; and restricted to V5 are Ro, we can conclude that S; élm wy and S5 élm ws.

Thus, w; € L(G;1) and we € L(G2) and therefore, w = wiws € L(G1)L(G2). On the other
hand, if w; € L(G1) and wy € L(G2) then we have S; :*>G1 wi and Sy éGQ wy. Take
w = wiwe € L(G1)L(G2). Now since R1 U Ry C R, we have S; 2o wp and Sy = wo.
Therefore, we have, S =g 515 :*>G w1 S :*>G wiwe = w, and so w € L(G).



Kleene Closure Let G = (V =V, U{S},X,R= R U{S — S5 | €},S), where S ¢ V;. We will
show that L(G) = (L(G1))*. We will show if w € L(G) then w € (L(G1))* by induction
on the length of the leftmost derivation of w. For the base case, consider w such that
S =C w. Since S — € is the only rule for S whose right-hand side has terminals, this
means that w = e. Further, e € (L(G7))* which establishes the base case. The induction
hypothesis assumes that for all strings w, if S =, w in < n steps then w € (L(G1))*.

« G
Consider w such that S =, w in n steps. Any leftmost derivation has the following form:
x G * x G .
S =6 85, =1n W1S1 =, wiwe = w. Now we have S =, w; is < n steps (because
x G x G .

S1 =, w2 takes at least one step), and S7 =, wa. This means that wy € (L(G1))* (by
induction hypothesis) and ws € L(G1) (since the only rules in R for variables in V; are those
belonging to R;). Thus, w = wywy € (L(G1))*. For the converse, suppose w € (L(G1))*. By
definition, this means that there are wi,ws,...w, (for n > 0) such that w; € L(G}) for all
i. Now if n = 0 (i.e., w = €) then we have S =G w because S — € is a rule. Otherise, since
w; € L(Gy), we have S =@, w;, for each i. Since Ry C R, S; =¢ w;. Hence we have the
following derivation

S =q S8 =6 SSS1 =g =6 S(S1)" =6 (S1)" e wi(S1)" ! S Do wiwa Wy, = W

O
Intersection
Proposition 6. CFLs are not closed under intersection
Proof. o Ly = {a'b'c¢/ |i,j >0} is a CFL
— Generated by a grammar with rules S — XY; X — aXble; Y — cYle.
o Ly={a'b’c’ |i,j >0} is a CFL.
— Generated by a grammar with rules S — XY; X — aX|e; Y — bY ¢le.
e But L; N Ly = {a™b"c" | n > 0}, which we will see soon, is not a CFL. O

Intersection with Regular Languages

Proposition 7. If L is a CFL and R is a regular language then LN R is a CFL.

Proof. Let P be the PDA that accepts L, and let M be the DFA that accepts R. A new PDA
P’ will simulate P and M simultaneously on the same input and accept if both accept. Then P’
accepts L N R.

e The stack of P’ is the stack of P

e The state of P’ at any time is the pair (state of P, state of M)



e These determine the transition function of P’
e The final states of P’ are those in which both the state of P and state of M are accepting.

More formally, let M = (Q1, %, 61, q1, F1) be a DFA such that L(M) = R, and P = (Q2, %, T, 02, g2, F2)
be a PDA such that L(P) = L. Then consider P’ = (Q, %, T, 6, qo, F') such that

e Q=01 xQ>

* g0 = (q1,92)
o ['= F1 X F2
_ J {lp,d),b) | (d,b) € da(q,2,0)} when z = €
S0 = ) e lo8) € g} when s £t

One can show by induction on the number of computation steps, that for any w € X*

(q0,€) S pr (9 q),0) iff g1 —Zar p and (g2, €) —=p {q,0)

The proof of this statement is left as an exercise. Now as a consequence, we have w € L(P’)
iff (qo,€) —pr {(p,q),0) such that (p,q) € F (by definition of PDA acceptance) iff (go, €) — pr
{(p,q),0) such that p € Fy and q € F, (by definition of F) iff ¢ —— s p and {g2,€) —p (g, 0) and
p € Fy and q € F» (by the statement to be proved as exercise) iff w € L(M) and w € L(P) (by
definition of DFA acceptance and PDA acceptance). O

Why does this construction not work for intersection of two CFLs?

Complementation

Proposition 8. Context-free languages are not closed under complementation.

Proof. [Proof 1] Suppose CFLs were closed under complementation. Then for any two CFLs Ly,
Lo, we have

e L; and Ly are CFL. Then, since CFLs closed under union, L; U Ly is CFL. Then, again by
hypothesis, L1 U Lo is CFL.

eie, L1NLyisaCFL

i.e., CFLs are closed under intersection. Contradiction!
[Proof 2] L = {z | z not of the form ww} is a CFL.

e L generated by a grammar with rules X — a|b, A — a|XAX, B — b|XBX,S — A|B|AB|BA

But L = {ww | w € {a,b}*} we will see is not a CFL! O

Set Difference



Proposition 9. If L is a CFL and L is a CFL then Ly \ Ly is not necessarily a CFL

Proof. Because CFLs not closed under complementation, and complementation is a special case of
set difference. (How?) O

Proposition 10. If L is a CFL and R is a regular language then L\ R is a CFL
Proof. L\R=LNR O
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