1 Three Simplifications

Motivation for Grammar Simplification

Parsing Problem

Given a CFG G and string w, determine if $w \in \mathbf{L}(G)$.

• Fundamental problem in compiler design and natural language processing.

If G is in general form then the procedure maybe very inefficient. So the grammar is "transformed" into a simpler form to make the parsing problem easier.

1.1 Eliminating ϵ -productions

Eliminating ϵ -productions

- Often would like to ensure that the length of the intermediate strings in a derivation are not longer than the final string derived
- But a long intermediate string can lead to a short final string if there are ϵ -productions (rules of the form $A \to \epsilon$).
- Can we rewrite the grammar not to have ϵ -productions?

Eliminating ϵ -production

The Problem

Given a grammar G produce an equivalent grammar G' (i.e., $\mathbf{L}(G) = \mathbf{L}(G')$) such that G' has no rules of the form $A \to \epsilon$, except possibly $S \to \epsilon$, and S does not appear on the right hand side of any rule.

Note: If S can appear on the RHS of a rule, say $S \to SS$, then when there is the rule $S \to \epsilon$, we can again have long intermediate strings yielding short final strings.

We will first introduce a concept that will be useful in this transformation.

Nullable Variables

Definition 1. A variable A (of grammar G) is nullable if $A \stackrel{*}{\Rightarrow} \epsilon$.

How do you determine if a variable is nullable?

- If $A \to \epsilon$ is a production in G then A is nullable
- If $A \to B_1 B_2 \cdots B_k$ is a production and each B_i is nullable, then A is nullable.
- Repeat the above steps until no new nullable variables can be found.

Using nullable variables

Intuition

For every variable A in G have a variable A in G' such that $A \stackrel{*}{\Rightarrow}_{G'} w$ iff $A \stackrel{*}{\Rightarrow}_{G} w$ and $w \neq \epsilon$. For every rule $B \to CAD$ in G, where A is nullable, add two rules in G': $B \to CD$ and $B \to CAD$.

The Algorithm

- If $G = (V, \Sigma, R, S)$ then $G' = (V \cup \{S'\}, \Sigma, R', S')$ where $S' \notin V$.
- And the set R' will be defined as follows. For each rule $A \to X_1 X_2 \cdots X_k$ in G, create rules $A \to \alpha_1 \alpha_2 \cdots \alpha_k$ where

$$\alpha_i = \begin{cases} X_i & \text{if } X_i \text{ is a non-nullable variable/terminal in } G \\ X_i \text{ or } \epsilon & \text{if } X_i \text{ is nullable in } G \end{cases}$$

and not all α_i are ϵ

• Add rule $S' \to S$. If S nullable in G, add $S' \to \epsilon$ also.

Correctness of the Algorithm

Leftmost Derivations

Before proving the correctness, we will introduce the notion of a leftmost derivation. A derivation $A \stackrel{*}{\Rightarrow} w$ is a *leftmost derivation* if every step of the derivation is obtained by applying a rule to the leftmost variable; we will denote this by $A \stackrel{*}{\Rightarrow}_{lm} w$.

Example 2. Let $G = (\{S, A, B\}, \{a, b\}, \{S \to AB, A \to aA \mid a, B \to bB \mid b\}, S)$. The derivation $S \Rightarrow AB \Rightarrow aB \Rightarrow ab$ is a leftmost derivation. However, $S \Rightarrow AB \Rightarrow Ab \Rightarrow ab$ is not a leftmost derivation.

A few properties of leftmost derivations are useful to observe.

- Our proof constructing a derivation corresponding to a parse tree constructed a leftmost derivation.
- Therefore, $A \stackrel{*}{\Rightarrow} w$ iff $A \stackrel{*}{\Rightarrow}_{lm} w$.
- A grammar $G = (V, \Sigma, R, S)$ is ambiguous iff there is $w \in \Sigma^*$ such that w has two (different) parse trees with root S and yield w iff there is $w \in \Sigma^*$ such that there are two (different) leftmost derivation of w from S.
- For $w \in \Sigma^*$, a leftmost derivation $A \stackrel{*}{\Rightarrow}_{\operatorname{lm}} w$ has the form

$$A \Rightarrow X_1 X_2 \cdots X_k \stackrel{*}{\Rightarrow}_{\operatorname{lm}} w_1 X_2 \cdots X_k \stackrel{*}{\Rightarrow}_{\operatorname{lm}} w_1 w_2 X_3 \cdots X_k \cdots \stackrel{*}{\Rightarrow}_{\operatorname{lm}} w_1 w_2 \cdots w_k = w$$

where $w_i \in \Sigma^*$, and $w_i = X_i$ if $X_i \in \Sigma$. That is, the derivation applies a rule to A, and then applies a sequence of steps to the leftmost symbol until we get a string of terminals (and no steps if the leftmost symbol is not a variable), and then sequence of steps the second symbol, and so on. Thus, here we have $X_i \stackrel{*}{\Rightarrow}_{\operatorname{lm}} w_i$.

We are now ready to prove the correctness of the algorithm eliminating ϵ -rules.

Proof. • By construction, there are no rules of the form $A \to \epsilon$ in G' (except possibly $S' \to \epsilon$), and S' does not appear in the RHS of any rule.

- L(G) = L(G')
 - $-L(G') \subseteq L(G)$: For every rule $A \to w$ in G', we have $A \stackrel{*}{\Rightarrow}_G w$ (by expanding zero or more nullable variables in w to ϵ)
 - $-L(G) \subseteq L(G')$: If $\epsilon \in L(G)$, then $\epsilon \in L(G')$. For $w \neq \epsilon$, we will prove by induction a stronger statement. We will show that for every $w \in \Sigma^*$ ($w \neq \epsilon$), and every variable A, if $A \Rightarrow_{\text{lm}}^{*G} w$ then $A \Rightarrow_{\text{lm}}^{*G} w$ by induction on the number of steps in the derivation $A \Rightarrow_{\text{lm}}^{*G} w$.
 - * Base Case: If $A \stackrel{*}{\Rightarrow}_{\operatorname{lm}}^G w$ in one step, then $A \to w$ is rule in G. Since $w \neq \epsilon$, $A \to w$ is also a rule in G', and so $A \stackrel{*}{\Rightarrow}_{\operatorname{lm}}^{G'} w$.
 - * **Ind.** Step: Consider $A \stackrel{*}{\Rightarrow}_{lm}^G w$. Then by the property of leftmost derivations, $A \stackrel{*}{\Rightarrow}_{lm}^G w$ is of the form

$$A \Rightarrow X_1 X_2 \cdots X_k \stackrel{*}{\Rightarrow}_{\operatorname{lm}} w_1 X_2 \cdots X_k \stackrel{*}{\Rightarrow}_{\operatorname{lm}} w_1 w_2 X_3 \cdots X_k \cdots \stackrel{*}{\Rightarrow}_{\operatorname{lm}} w_1 w_2 \cdots w_k = w$$

where $X_i \stackrel{*}{\Rightarrow}^G_{\operatorname{lm}} w_i$. Now if $w_i \neq \epsilon$, then by induction hypothesis we have $X_i \stackrel{*}{\Rightarrow}^{G'}_{\operatorname{lm}} w_i$. Thus, if $i_1, \ldots i_n$ are the indices such that $w_i \neq \epsilon$, then we have $A \Rightarrow_{G'} X_{i_1} X_{i_2} \cdots X_{i_n}$ (as the other veriables are nullable, $X_{i_j} \stackrel{*}{\Rightarrow}^{G'}_{\operatorname{lm}} w_{i_j}$ by induction hypothesis, and $w = w_{i_1} \cdots w_{i_n}$ (as the other w_j s are ϵ). Putting it all together we have

$$A \Rightarrow^{G'} X_{i_1} \cdots X_{i_n} \stackrel{*}{\Rightarrow}^{G'}_{lm} w_{i_1} X_{i_2} \cdots X_{i_n} \stackrel{*}{\Rightarrow}^{G'}_{lm} \cdots \stackrel{*}{\Rightarrow}^{G'}_{lm} w_{i_1} w_{i_2} \cdots w_{i_n} = w$$

Eliminating ϵ -productions

An Example

Example 3. Let $G = (\{S, A, B\}, \{a, b\}, R, S)$ where R is given by: $S \to AB$; $A \to AaA|\epsilon$; and $B \to BbB|\epsilon$.

- Nullables in G are A, B and S
- G' will have variables $\{S', S, A, B\}$ and rules:

$$-S \rightarrow AB|A|B$$

 $-A \rightarrow AaA|aA|Aa|a$

 $-B \rightarrow BbB|bB|Bb|b$

 $-S' \to S|\epsilon$

1.2 Eliminating Unit Productions

Eliminating Unit Productions

- Often would like to ensure that the number of steps in a derivation are not much more than the length of the string derived
- But can have a long chain of derivation steps that make little or no "progress," if the grammar has unit productions (rules of the form $A \to B$, where B is a non-terminal).
 - Note: $A \rightarrow a$ is not a unit production
- Can we rewrite the grammar not to have unit-productions?

Eliminating unit-productions

Given a grammar G produce an equivalent grammar G' (i.e., $\mathbf{L}(G) = \mathbf{L}(G')$) such that G' has no rules of the form $A \to B$ where $B \in V'$.

Role of Unit Productions

Unit productions can play an important role in designing grammars:

- While eliminating ϵ -productions we added a rule $S' \to S$. This is a unit production.
- We have used unit productions in building an unambiguous grammar:

$$\begin{array}{ll} I \rightarrow a \mid b \mid Ia \mid Ib & T \rightarrow F \mid T * F \\ N \rightarrow 0 \mid 1 \mid N0 \mid N1 & E \rightarrow T \mid E + T \\ F \rightarrow I \mid N \mid -N \mid (E) & \end{array}$$

But as we shall see now, they can be (safely) eliminated

Eliminating Unit Productions

Basic Idea

Introduce new "look-ahead" productions to replace unit productions: look ahead to see where the unit production (or a chain of unit productions) leads to and add a rule to directly go there.

Example 4. $E \to T \to F \to I \to a|b|Ia|Ib$. So introduce new rules $E \to a|b|Ia|Ib$

But what if the grammar has cycles of unit productions? For example, $A \to B|a, B \to C|b$ and $C \to A|c$. You cannot use the "look-ahead" approach, because then you will get into an infinite loop.

The Algorithm

- 1. Determine pairs $\langle A, B \rangle$ such that $A \stackrel{*}{\Rightarrow}_u B$, i.e., A derives B using only unit rules. Such pairs are called *unit pairs*.
 - Easy to determine unit pairs: Make a directed graph with vertices =V, and edges = unit productions. $\langle A, B \rangle$ is a unit pair, if there is a directed path from A to B in the graph.
 - Note, it is possible to $A \stackrel{*}{\Rightarrow} B$ without using unit productions. Example, $A \to BC$ and $C \to \epsilon$.
- 2. If $\langle A, B \rangle$ is a unit pair, then add production rules $A \to \beta_1 |\beta_2| \cdots \beta_k$, where $B \to \beta_1 |\beta_2| \cdots |\beta_k$ are all the non-unit production rules of B
- 3. Remove all unit production rules.

Proposition 5. Let G' be the grammar obtained from G using this algorithm to eliminate unit productions. Then $\mathbf{L}(G') = \mathbf{L}(G)$

Proof. $\mathbf{L}(G') \subseteq \mathbf{L}(G)$: For every rule $A \to w$ in G', we have $A \stackrel{*}{\Rightarrow}_G w$ (by a sequence of zero or more unit productions followed by a nonunit production of G)

 $L(G) \subseteq L(G')$: For $w \in L(G)$ consider a leftmost derivation $S \stackrel{*}{\Rightarrow}_{lm} w$ in G.

- All these derivation steps are possible in G' also, except the ones using the unit productions of G.
- Suppose $S \stackrel{*}{\Rightarrow} xA\alpha \Rightarrow_1 xB\alpha \Rightarrow_2 \cdots$, where \Rightarrow_1 corresponds to a unit rule. Then (in a leftmost derivation) \Rightarrow_2 must correspond to using a rule for B.
- So a leftmost derivation of w in G can be broken up into "big-steps" each consisting of zero or more unit productions on the leftmost variable, followed by a non-unit production.
- For each such "big-step" there is a single production rule in G' that yields the same result. \Box

1.3 Eliminating Useless Symbols

Eliminating Useless Symbols

- Ideally one would like to use a compact grammar, with the fewest possible variables
- But a grammar may have "useless" variables which do not appear in any valid derivation
- Can we identify all the useless variables and remove them from the grammar? (Note: there may still be other redundancies in the grammar.)

Useless Symbols

Definition 6. A symbol $X \in V \cup \Sigma$ is useless in a grammar $G = (V, \Sigma, S, P)$ if there is no derivation of the form $S \stackrel{*}{\Rightarrow} \alpha X \beta \stackrel{*}{\Rightarrow} w$ where $w \in \Sigma^*$ and $\alpha, \beta \in (V \cup \Sigma)^*$.

Removing useless symbols (and rules involving them) from a grammar does not change the language of the grammar.

We can say X is useless iff either

Type 1: X is not "reachable" from S (i.e., no α, β such that $S \stackrel{*}{\Rightarrow} \alpha X \beta$), or

Type 2: for all α, β such that $S \stackrel{*}{\Rightarrow} \alpha X \beta$, either α, X or β cannot yield a string in Σ^* . i.e., either

Type 2a: X is not "generating" (i.e., no $w \in \Sigma^*$ such that $X \stackrel{*}{\Rightarrow} w$), or

Type 2b: α or β contains a non-generating symbol

Algorithm to Remove Useless Symbols

Algorithm

So, in order to remove useless symbols,

- 1. First remove all symbols that are not generating (Type 2a)
 - ullet If X was useless, but reachable and generating (i.e., Type 2b) then X becomes unreachable after this step
 - Type 2b: for all α, β such that $S \stackrel{*}{\Rightarrow} \alpha X \beta$, α or β contains a non-generating symbol. Then in the new grammar all such derivations disappear (because some variable in α or β is removed).
- 2. Next remove all unreachable symbols in the new grammar.
 - Removes Type 1 (originally unreachable) and Type 2b useless symbols now

Doesn't remove any useful symbol in either step (Why?)

Only remains to show how to do the two steps in this algorithm -

Generating and Reachable Symbols

Generating symbols

- If $A \to x$, where $x \in \Sigma^*$, is a production then A is generating
- If $A \to \gamma$ is a production and all variables in γ are generating, then A is generating.

Reachable symbols

- \bullet S is reachable
- If A is reachable and $A \to \alpha B\beta$ is a production, then B is reachable

1.4 Putting Together the Three Simplifications

The Three Simplifications, Together

Proposition 7. Given a grammar G, such that $\mathbf{L}(G) \neq \emptyset$, we can find a grammar G' such that $\mathbf{L}(G') = \mathbf{L}(G)$ and G' has no ϵ -productions (except possibly $S \to \epsilon$), unit productions, or useless symbols, and S does not appear in the RHS of any rule.

Proof. Apply the following 3 steps in order:

- 1. Eliminate ϵ -productions
- 2. Eliminate unit productions
- 3. Eliminate useless symbols.

Note: Applying the steps in a different order may result in a grammar not having all the desired properties.