
1 Computing Using a Stack

Beyond Finite Memory: The Stack

• So far we considered automata with finite memory

• Today: automata with access to an infinite stack

• The stack can contain an unlimited number of characters. But

– can read/erase only the top of the stack: pop

– can add to only the top of the stack: push

• On longer inputs, automaton may have more items in the stack

Keeping Count Using the Stack

• An automaton can use the stack to recognize {0n1n | n ≥ 0}

– On reading a 0, push it into the stack

– After the 0s, on reading each 1, pop a 0

– (If a 0 comes after a 1, reject)

– If attempt to pop an empty stack, reject

– If stack not empty at the end, reject

– Else accept

Matching Parenthesis Using the Stack

• An automaton can use the stack to recognize balanced parenthesis

• e.g. (())() is balanced, but ())() and (() are not

– On seeing a (push it on the stack

– On seeing a) pop a (from the stack

– If attempt to pop an empty stack, reject

– If stack not empty at the end, reject

– Else accept

1

2 Definition of Pushdown Automata

Pushdown Automata (PDA)

a b b a a b

x
y

x

$

finite-state
control

input

stack

Figure 1: A Pushdown Automaton

• Like an NFA with ε-transitions, but with a stack

– Stack depth unlimited: not a finite-state machine

– Non-deterministic: accepts if any thread of execution accepts

• Has a non-deterministic finite-state control

• At every step:

– Consume next input symbol (or none) and pop the top symbol on stack (or none)

– Based on current state, consumed input symbol and popped stack symbol, do (non-
deterministically):

1. push a symbol onto stack (or push none)

2. change to a new state

q1 q2

a, x→ y

If at q1, with next input symbol a and top of stack x, then can consume a, pop x, push y onto
stack and move to q2 (any of a, x, y may be ε)

Pushdown Automata (PDA): Formal Definition
A PDA P = (Q,Σ,Γ, δ, q0, F) where

• Q = Finite set of states

• Σ = Finite input alphabet

2

• Γ = Finite stack alphabet

• q0 = Start state

• F ⊆ Q = Accepting/final states

• δ : Q× (Σ ∪ {ε})× (Γ ∪ {ε})→ P(Q× (Γ ∪ {ε}))

3 Examples of Pushdown Automata

Matching Parenthesis: PDA construction

q0 q qF
ε, ε→ $ ε, $→ ε

(, ε→ (

), (→ ε

• First push a “bottom-of-the-stack” symbol $ and move to q

• On seeing a (push it onto the stack

• On seeing a) pop if a (is in the stack

• Pop $ and move to final state qF

Matching Parenthesis: PDA execution

(()) ())

$

q

input

stack

)) ())

(

(

$

q

) ())

(

$

q

())

$

q

))

(

$

q

3

)

$

q

)

$

!

Palindrome: PDA construction

q0 q↓ q↑ qF
ε, ε→ $

ε, ε→ ε

a, ε→ ε

ε, $→ ε

a, ε→ a a, a→ ε

• First push a “bottom-of-the-stack” symbol $ and move to a pushing state

• Push input symbols onto the stack

• Non-deterministically move to a popping state (with or without consuming a single input
symbol)

• If next input symbol is same as top of stack, pop

• If $ on top of stack move to accept state

Palindrome: PDA execution
m a d a m

$

q↓

a d a m

m

$

q↓

d a m

a

m

$

q↓

a m

a

m

$

q↑

m

m

$

q↑

$

q↑

qF

4

4 Semantics of a PDA

4.1 Computation

Instantaneous Description

In order to describe a machine’s execution, we need to capture a “snapshot” of the machine that
completely determines future behavior

• In the case of an NFA (or DFA), it is the state

• In the case of a PDA, it is the state + stack contents

Definition 1. An instantaneous description of a PDA P = (Q,Σ,Γ, δ, q0, F) is a pair 〈q, σ〉, where
q ∈ Q and σ ∈ Γ∗

Computation

Definition 2. For a PDA P = (Q,Σ,Γ, δ, q0, F), string w ∈ Σ∗, and instantaneous descriptions
〈q1, σ1〉 and 〈q2, σ2〉, we say 〈q1, σ1〉

w−→P 〈q2, σ2〉 iff there is a sequence of instanteous descriptions
〈r0, s0〉, 〈r1, s1〉, . . . 〈rk, sk〉 and a sequence x1, x2, . . . xk, where for each i, xi ∈ Σ ∪ {ε}, such that

• w = x1x2 · · ·xk,

• r0 = q1, and s0 = σ1,

• rk = q2, and sk = σ2,

• for every i, (ri+1, b) ∈ δ(ri, xi+1, a) such that si = as and si+1 = bs, where a, b ∈ Γ ∪ {ε} and
s ∈ Γ∗

Example of Computation

Example 3.

q0 q qF
ε, ε→ $ ε, $→ ε

(, ε→ (

), (→ ε

〈q0, ε〉
(()(−→ 〈q, (($〉 because

〈q0, ε〉
x1=ε−→ 〈q, $〉 x2=(−→ 〈q, ($〉 x3=(−→ 〈q, (($〉 x4=)−→ 〈q, ($〉 x5=(−→ 〈q, (($〉

5

4.2 Language Recognized

Acceptance/Recognition

Definition 4. A PDA P = (Q,Σ,Γ, δ, q0, F) accepts a string w ∈ Σ∗ iff for some q ∈ F and σ ∈ Γ∗,
〈q0, ε〉

w−→P 〈q, σ〉

Definition 5. The language recognized/accepted by a PDA P = (Q,Σ,Γ, δ, q0, F) is L(P) = {w ∈
Σ∗ | P accepts w}. A language L is said to be accepted/recognized by P if L = L(P).

4.3 Expressive Power

Expressive Power of CFGs and PDAs

CFGs and PDAs have equivalent expressive powers. More formally, . . .

Theorem 6. For every CFG G, there is a PDA P such that L(G) = L(P). In addition, for every
PDA P , there is a CFG G such that L(P) = L(G). Thus, L is context-free iff there is a PDA P
such that L = L(P).

Proof. Skipped.

6

	Computing Using a Stack
	Definition of Pushdown Automata
	Examples of Pushdown Automata
	Semantics of a PDA
	Computation
	Language Recognized
	Expressive Power

