1 Pumping Lemma

1.1 Statement and Proof

Pumping Lemma: Overview

Pumping Lemma

Gives the template of an argument that can be used to easily prove that many languages are non-regular.

Pumping Lemma

Lemma 1. If L is regular then there is a number p (the pumping length) such that $\forall w \in L$ with $|w| \ge p, \exists x, y, z \in \Sigma^*$ such that w = xyz and

- 1. |y| > 0
- 2. $|xy| \leq p$
- 3. $\forall i \geq 0$. $xy^i z \in L$

Proof. Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA such that L(M) = L and let p = |Q|. Let $w = w_1 w_2 \cdots w_n \in L$ be such that $n \ge p$. For $1 \le i \le n$, let $\{s_i\} = \hat{\delta}_M(q_0, w_1 \cdots w_i)$; define $s_0 = q_0$.

- Since $s_0, s_1, \ldots, s_i, \ldots, s_p$ are p+1 states, there must be $j, k, 0 \le j < k \le p$ such that $s_j = s_k$ (=q say).
- Take $x = w_1 \cdots w_j$, $y = w_{j+1} \cdots w_k$, and $z = w_{k+1} \cdots w_n$
- Observe that since $j < k \le p$, we have $|xy| \le p$ and |y| > 0.

Claim

For all $i \ge 1$, $\hat{\delta}_M(q_0, xy^i) = \hat{\delta}_M(q_0, x)$.

Proof. We will prove it by induction on i.

- Base Case: By our assumption that $s_j = s_k$ and the definition of x and y, we have $\hat{\delta}_M(q_0, xy) = \{s_k\} = \{s_j\} = \hat{\delta}_M(q_0, x)$.
- *Induction Step:* We have

$$\hat{\delta}_M(q_0, xy^{\ell+1}) = \hat{\delta}_M(q, y) \text{ where } \{q\} = \hat{\delta}_M(q_0, xy^{\ell})$$
$$= \hat{\delta}_M(q, y) \text{ where } \{q\} = \hat{\delta}_M(q_0, x)$$
$$= \hat{\delta}_M(q_0, xy) = \hat{\delta}_M(q_0, x) \qquad \Box$$

We now complete the proof of the pumping lemma.

- We have $\hat{\delta}_M(q_0, xy^i) = \hat{\delta}_M(q_0, x)$ for all $i \ge 1$
- Since $w \in L$, we have $\hat{\delta}_M(q_0, w) = \hat{\delta}_M(q_0, xyz) \subseteq F$
- Observe, $\hat{\delta}_M(q_0, xz) = \hat{\delta}_M(q, z) = \hat{\delta}_M(q_0, w)$, where $\{q\} = \hat{\delta}_M(q_0, x) = \hat{\delta}_M(q_0, xy)$. So $xz \in L$
- Similarly, $\hat{\delta}_M(q_0, xy^i z) = \hat{\delta}_M(q_0, xyz) \subseteq F$ and so $xy^i z \in L$

Finite Languages and Pumping Lemma

Question

Do finite languages really satisfy the condition in the pumping lemma?

Recall Pumping Lemma: If L is regular then there is a number p (the pumping length) such that $\forall w \in L$ with $|w| \ge p$, $\exists x, y, z \in \Sigma^*$ such that w = xyz and

- 1. |y| > 0
- 2. $|xy| \leq p$
- 3. $\forall i \geq 0$. $xy^i z \in L$

Answer

Yes, they do. Let p be larger than the longest string in the language. Then the condition " $\forall w \in L$ with $|w| \ge p, \ldots$ " is vaccuously satisfied as there are no strings in the language longer than p!

1.2 Applications

Using the Pumping Lemma

L regular implies that L satisfies the condition in the pumping lemma. If L is not regular pumping lemma says nothing about L!

Pumping Lemma, in contrapositive

If L does not satisfy the pumping condition, then L not regular.

Negation of the Pumping Condition

$$\begin{array}{ll} \forall p. & \exists w \in L. \text{ with } |w| \ge p & \forall x, y, z \in \Sigma^*. \ w = xyz \\ (1) & |y| > 0 \\ (2) & |xy| \le p \\ (3) & \forall i \ge 0. \ xy^i z \in L \end{array} \right\} \text{ not all of them hold}$$

Equivalent to showing that if (1), (2) then (3) does not. In other words, we can find i such that $xy^i z \notin L$

Game View

Think of using the Pumping Lemma as a game between you and an opponent.

L	Task: To show that L is not regular
$\forall p.$	Opponent picks p
$\exists w.$	Pick w that is of length at least p
$\forall x, y, z$	Opponent divides w into x, y , and z such that
	$ y > 0$, and $ xy \le p$
$\exists k.$	You pick k and win if $xy^k z \notin L$

Pumping Lemma: If L is regular, *opponent* has a winning strategy (no matter what you do). Contrapositive: If you can beat the opponent, L not regular.

Your strategy should work for any p and any subdivision that the opponent may come up with.

Example I

Proposition 2. $L_{0n1n} = \{0^n 1^n \mid n \ge 0\}$ is not regular.

Proof. Suppose L_{0n1n} is regular. Let p be the pumping length for L_{0n1n} .

- Consider $w = 0^p 1^p$
- Since |w| > p, there are x, y, z such that w = xyz, $|xy| \le p$, |y| > 0, and $xy^i z \in L_{0n1n}$, for all i.
- Since $|xy| \leq p$, $x = 0^r$, $y = 0^s$ and $z = 0^t 1^p$. Further, as |y| > 0, we have s > 0.

$$xy^0 z = 0^r \epsilon 0^t 1^p = 0^{r+t} 1^p$$

Since r + t < p, $xy^0 z \notin L_{0n1n}$. Contradiction!

Example II

Proposition 3. $L_{eq} = \{w \in \{0,1\}^* \mid w \text{ has an equal number of 0s and 1s}\}$ is not regular. Proof. Suppose L_{eq} is regular. Let p be the pumping length for L_{eq} .

- Consider $w = 0^p 1^p$
- Since |w| > p, there are x, y, z such that w = xyz, $|xy| \le p$, |y| > 0, and $xy^i z \in L_{eq}$, for all i.
- Since $|xy| \le p$, $x = 0^r$, $y = 0^s$ and $z = 0^t 1^p$. Further, as |y| > 0, we have s > 0.

$$xy^{0}z = 0^{r} \epsilon 0^{t} 1^{p} = 0^{r+t} 1^{p}$$

Since r + t < p, $xy^0 z \notin L_{eq}$. Contradiction!

Example III

Proposition 4. $L_p = \{0^i \mid i \text{ prime}\}$ is not regular

Proof. Suppose L_p is regular. Let p be the pumping length for L_p .

- Consider $w = 0^m$, where $m \ge p + 2$ and m is prime.
- Since |w| > p, there are x, y, z such that w = xyz, $|xy| \le p$, |y| > 0, and $xy^i z \in L_p$, for all i.
- Thus, $x = 0^r$, $y = 0^s$ and $z = 0^t$. Further, as |y| > 0, we have s > 0. $xy^{r+t}z = 0^r(0^s)^{(r+t)}0^t = 0^{r+s(r+t)+t}$. Now r + s(r+t) + t = (r+t)(s+1). Further $m = r+s+t \ge p+2$ and s > 0 mean that $t \ge 2$ and $s+1 \ge 2$. Thus, $xy^{r+t}z \notin L_p$. Contradiction!

Example IV

Question

Is $L_{eq} = \{xx \mid x \in \{0,1\}^*\}$ is regular?

Suppose L_{eq} is regular, and let p be the pumping length of L_{eq} .

- Consider $w = 0^p 0^p \in L$.
- Can we find substrings x, y, z satisfying the conditions in the pumping lemma? Yes! Consider $x = \epsilon, y = 00, z = 0^{2p-2}$.
- Does this mean L_{eq} satisfies the pumping lemma? Does it mean it is regular?
 - No! We have chosen a bad w. To prove that the pumping lemma is violated, we only need to exhibit *some* w that cannot be pumped.
- Another bad choice $(01)^p (01)^p$.

Example IV Reloaded

Proposition 5. $L_{eq} = \{xx \mid x \in \{0,1\}^*\}$ is not regular.

Proof. Suppose L_{eq} is regular. Let p be the pumping length for L_{xx} .

- Consider $w = 0^p 10^p 1$.
- Since |w| > p, there are x, y, z such that w = xyz, $|xy| \le p$, |y| > 0, and $xy^i z \in L_p$, for all i.
- Since $|xy| \le p$, $x = 0^r$, $y = 0^s$ and $z = 0^t 10^p 1$. Further, as |y| > 0, we have s > 0.

$$xy^0z = 0^r \epsilon 0^t 10^p 1 = 0^{r+t} 10^p 1$$

Since $r + t < p, xy^0 z \notin L_{eq}$. Contradiction!