1 Expressiveness

1.1 Finite Languages

Finite Languages

Definition 1. A language is finite if it has finitely many strings.

Example 2. $\{0, 1, 00, 10\}$ is a finite language, however, $(00 \cup 11)^*$ is not.

Proposition 3. If L is finite then L is regular.

Proof. Let $L = \{w_1, w_2, \dots w_n\}$. Then $R = w_1 \cup w_2 \cup \dots \cup w_n$ is a regular expression defining L. \square

1.2 Non-Regular Languages

Are all languages regular?

Proposition 4. The language $L_{eq} = \{w \in \{0,1\}^* \mid w \text{ has an equal number of 0s and 1s}\}$ is not regular.

Proof? No DFA has enough states to keep track of the number of 0s and 1s it might see. \Box

Above is a weak argument because $E = \{w \in \{0,1\}^* | w \text{ has an equal number of } 01 \text{ and } 10 \text{ substrings}\}$ is regular!

2 Proving Non-regularity

2.1 Lower Bound Method

Proving Non-Regularity

Proposition 5. The language $L_{eq} = \{w \in \{0,1\}^* \mid w \text{ has an equal number of 0s and 1s}\}$ is not regular.

Proof. Suppose (for contradiction) L_{eq} is recognized by DFA $M = (Q, \{0, 1\}, \delta, q_0, F)$.

Let $W = \{0\}^*$. For any $w_1, w_2 \in W$ with $w_1 \neq w_2$, $\hat{\delta}_M(q_0, w_1) \neq \hat{\delta}_M(q_0, w_2)$. Let us observe that if the claim holds, then M has infinitely many states, and so is not a finite automaton, giving the desired contradiction.

Claim: For any $w_1, w_2 \in W$ with $w_1 \neq w_2, \, \hat{\delta}_M(q_0, w_1) \neq \hat{\delta}_M(q_0, w_2)$.

Proof of Claim: Suppose (for contradiction) there is w_1 and w_2 such that $\hat{\delta}_M(q_0, w_1) = \hat{\delta}_M(q_0, w_2) = \{q\}$. Without loss of generality we can assume that $w_1 = 0^i$ and $w_2 = 0^j$, with i < j. Then, $\hat{\delta}_M(q_0, w_1 1^i = 0^i 1^i) = \hat{\delta}_M(q, 1^i) = \hat{\delta}_M(q_0, w_2 1^i = 0^j 1^i)$. Thus, M either accepts both $0^i 1^i$ and $0^j 1^i$, or neither. But $0^i 1^i \in L_{\text{eq}}$ but $0^j 1^i \notin L_{\text{eq}}$, contradicting the assumption that M recognizes L_{eq} . \square

Example I

Proposition 6. $L_{0n1n} = \{0^n 1^n \mid n \ge 0\}$ is not regular.

Proof. Suppose L_{0n1n} is regular and is recignized by DFA $M = (Q, \{0, 1\}, \delta, q_0, F)$.

- Let $W = \{0\}^*$. For any $w_1, w_2 \in W$ with $w_1 \neq w_2$, $\hat{\delta}_M(q_0, w_1) \neq \hat{\delta}_M(q_0, w_2)$.
 - Suppose (for contradiction) $\hat{\delta}_M(q_0, w_1) = \hat{\delta}_M(q_0, w_2) = \{q\}$, where $w_1 = 0^i$ and $w_2 = 0^j$, with i < j.
 - Then, $\hat{\delta}_M(q_0, w_1 1^i = 0^i 1^i) = \hat{\delta}_M(q, 1^i) = \hat{\delta}_M(q_0, w_2 1^i = 0^j 1^i).$
 - But $0^i 1^i \in L_{0n1n}$ but $0^j 1^i \notin L_{0n1n}$, contradicting the assumption that M recognizes L_{0n1n} .
- Because of the claim, M has infinitely many states, and so is not a finite automaton!

2.2 Using Closure Properties

Example II

Closure Properties

Proposition 7. $L_{anban} = \{a^n b a^n \mid n \ge 0\}$ is not regular.

Proof. We could prove this proposition the way we demonstrated the other languages to be not regular. We could show that for any two (different) strings in $W = \{a\}^*b$, any DFA M recognizing L_{anban} must go to different states, thus showing that M cannot have finitely many states. However, we choose to demonstrate a different technique to prove non-regularity of languages. This relies on closure properties.

The idea behind the proof is to show that if we had an automaton M accepting L_{anban} then we can construct an automaton accepting $L_{0n1n} = \{0^n1^n \mid n \geq 0\}$. But since we know L_{0n1n} is not regular, we can conclude L_{anban} cannot be regular. This is the idea of reductions, where one shows that one problem (namely, L_{0n1n} in this case) can be solved using a modified version of an algorithm solving another problem (L_{anban} in this case), which plays a central role in showing impossibility results. We will see more examples of this as the course goes on.

How do we show that a DFA recognizing L_{anban} can be modified to obtain a DFA for L_{0n1n} ? We will use closure properties for this. More formally, we will show that by applying a sequence of "regularity preserving" operations to L_{anban} we can get L_{0n1n} . Then, since L_{0n1n} is not regular, L_{anban} cannot be regular. The proof is as follows.

- Consider homomorphism $h_1: \{a,b,c\}^* \to \{a,b\}^*$ defined as $h_1(a) = a, h_1(b) = b, h_1(c) = a$.
 - $-L_1 = h_1^{-1}(L_{anban}) = \{(a \cup c)^n b(a \cup c)^n \mid n \ge 0\}$
- Let $L_2 = L_1 \cap \mathbf{L}(a^*bc^*) = \{a^nbc^n \mid n \ge 0\}$
- Homomorphism $h_2: \{a,b,c\}^* \to \{0,1\}^*$ is defined as $h_2(a) = 0$, $h_2(b) = \epsilon$, and $h_2(c) = 1$.

$$-L_3 = h_2(L_2) = \{0^n 1^n \mid n \ge 0\} = L_{0n1n}$$

• Now if L_{anban} is regular then so are L_1, L_2, L_3 , and L_{0n1n} . But L_{0n1n} is not regular, and so L is not regular.

Example III

Proposition 8. $L_{\text{neq}} = \{w_1 w_2 \mid w_1, w_2 \in \{0, 1\}^*, |w_1| = |w_2|, \text{ but } w_1 \neq w_2\} \text{ is not regular.}$

Proof. As before there are two ways to show this result. First we can show that if M with initial state q_0 is a DFA recognizing L_{ww} , then on any two (different) strings in $W = \{0,1\}^*$, M must be in different states. This is because, suppose on $x, y \in \{0,1\}^*$, $\hat{\delta}_M(q_0,x) = \hat{\delta}_(q_0,y)$ then $\hat{\delta}_M(q_0,xy) = \hat{\delta}_M(q_0,yy)$. But $xy \in L_{\text{neq}}$ and $yy \notin L_{\text{neq}}$, giving us the desired contradiction. Thus, M must have infinitely many states (since |W| is infinite), contradicting the fact that M is a finite automaton.

Another proof uses closure properties. Consider the following sequence of languages.

• Let $h_1: \{0,1,\#\}^* \to \{0,1\}^*$ be a homomorphism such that $h_1(0) = 1$, $h_1(1) = 1$ and $h_1(\#) = \epsilon$. Consider

$$L_1 = h_1^{-1}(L_{\text{neq}}) \cap \mathbf{L}((0 \cup 1)^* \# (0 \cup 1)^*) = \{w_1 \# w_2 | w_1, w_2 \in \{0, 1\}^*, |w_1| + |w_2| \text{ is even, and } w_1 \neq w_2\}$$

- $L_2 = \{0, 1, \#\}^* \setminus L_1$
- $L_3 = L_1 \cap \mathbf{L}((0 \cup 1)^* \# (0 \cup 1)^*) \cap ((\{0, 1, \#\}\{0, 1, \#\})^* \{0, 1, \#\}) = \{w_1 \# w_2 \mid w_1, w_2 \in \{0, 1\}^*, \text{ and } w_1 = w_2\}$
- Let $h_2: \{0, 1, \bar{0}, \bar{1}, \#\}^* \to \{0, 1, \#\}^*$ be a homomorphism where $h_2(0) = h_2(\bar{0}) = 0$, $h_2(1) = h_2(\bar{1}) = 1$ and $h_2(\#) = \#$. Let $L_4 = h_2^{-1}(L_3) \cap \mathbf{L}((\bar{0} \cup \bar{1})^* \# (0 \cup 1)^*)$. Observe that $L_4 = \{w_1 \# w_2 \mid w_1 \in \{\bar{0}, \bar{1}\}^*, w_2 \in \{0, 1\}^* \text{ and } w_1 \text{ is same as } w_2 \text{ except for the bars}\}$
- Let $h_3: \{0, 1, \bar{0}, \bar{1}, \#\}^* \to \{0, 1\}^*$ be the homomorphism where $h_3(\bar{0}) = 0$, $h_3(\bar{1}) = h_3(\#) = h_3(1) = \epsilon$, and $h_3(0) = 1$. Observe that $h_3(L_4) = L_{0n1n}$.

Due the closure properties of the regular languages, if L_{neq} is regular, then so are $L_1, L_2, L_3, L_4, h_3(L_4 = L_{0n1n})$. But since L_{0n1n} is not regular, L_{neq} is not regular.

Lessons on Expressivity

Limits of Finite Memory

Finite automata cannot

- "keep track of counts": e.g., L_{0n1n} not regular.
- "compare far apart pieces" of the input: e.g. L_{xx} not regular.
- do "computations that require it to look at global properties" of the input.