
1 Expressiveness

1.1 Finite Languages

Finite Languages

Definition 1. A language is finite if it has finitely many strings.

Example 2. {0, 1, 00, 10} is a finite language, however, (00 ∪ 11)∗ is not.

Proposition 3. If L is finite then L is regular.

Proof. Let L = {w1, w2, . . . wn}. Then R = w1∪w2∪· · ·∪wn is a regular expression defining L.

1.2 Non-Regular Languages

Are all languages regular?

Proposition 4. The language Leq = {w ∈ {0, 1}∗ | w has an equal number of 0s and 1s} is not
regular.

Proof? No DFA has enough states to keep track of the number of 0s and 1s it might see.

Above is a weak argument because E = {w ∈ {0, 1}∗|w has an equal number of 01 and 10 substrings}
is regular!

2 Proving Non-regularity

2.1 Lower Bound Method

Proving Non-Regularity

Proposition 5. The language Leq = {w ∈ {0, 1}∗ | w has an equal number of 0s and 1s} is not
regular.

Proof. Suppose (for contradiction) Leq is recognized by DFA M = (Q, {0, 1}, δ, q0, F).

Let W = {0}∗. For any w1, w2 ∈ W with w1 6= w2, δ̂M (q0, w1) 6= δ̂M (q0, w2). Let us observe
that if the claim holds, then M has infinitely many states, and so is not a finite automaton, giving
the desired contradiction.
Claim: For any w1, w2 ∈W with w1 6= w2, δ̂M (q0, w1) 6= δ̂M (q0, w2).
Proof of Claim: Suppose (for contradiction) there is w1 and w2 such that δ̂M (q0, w1) = δ̂M (q0, w2) =
{q}. Without loss of generality we can assume that w1 = 0i and w2 = 0j , with i < j. Then,
δ̂M (q0, w11

i = 0i1i) = δ̂M (q, 1i) = δ̂M (q0, w21
i = 0j1i). Thus, M either accepts both 0i1i and 0j1i,

or neither. But 0i1i ∈ Leq but 0j1i 6∈ Leq, contradicting the assumption that M recognizes Leq.

1

Example I

Proposition 6. L0n1n = {0n1n | n ≥ 0} is not regular.

Proof. Suppose L0n1n is regular and is recignized by DFA M = (Q, {0, 1}, δ, q0, F).

• Let W = {0}∗. For any w1, w2 ∈W with w1 6= w2, δ̂M (q0, w1) 6= δ̂M (q0, w2).

– Suppose (for contradiction) δ̂M (q0, w1) = δ̂M (q0, w2) = {q}, where w1 = 0i and w2 = 0j ,
with i < j.

– Then, δ̂M (q0, w11
i = 0i1i) = δ̂M (q, 1i) = δ̂M (q0, w21

i = 0j1i).

– But 0i1i ∈ L0n1n but 0j1i 6∈ L0n1n, contradicting the assumption that M recognizes
L0n1n.

• Because of the claim, M has infinitely many states, and so is not a finite automaton!

2.2 Using Closure Properties

Example II
Closure Properties

Proposition 7. Lanban = {anban | n ≥ 0} is not regular.

Proof. We could prove this proposition the way we demonstrated the other languages to be not
regular. We could show that for any two (different) strings in W = {a}∗b, any DFA M recognizing
Lanban must go to different states, thus showing that M cannot have finitely many states. However,
we choose to demonstrate a different technique to prove non-regularity of languages. This relies on
closure properties.

The idea behind the proof is to show that if we had an automaton M accepting Lanban then
we can construct an automaton accepting L0n1n = {0n1n | n ≥ 0}. But since we know L0n1n is
not regular, we can conclude Lanban cannot be regular. This is the idea of reductions, where one
shows that one problem (namely, L0n1n in this case) can be solved using a modified version of
an algorithm solving another problem (Lanban in this case), which plays a central role in showing
impossibility results. We will see more examples of this as the course goes on.

How do we show that a DFA recognizing Lanban can be modified to obtain a DFA for L0n1n?
We will use closure properties for this. More formally, we will show that by applying a sequence
of “regularity preserving” operations to Lanban we can get L0n1n. Then, since L0n1n is not regular,
Lanban cannot be regular. The proof is as follows.

• Consider homomorphism h1 : {a, b, c}∗ → {a, b}∗ defined as h1(a) = a, h1(b) = b, h1(c) = a.

– L1 = h−1
1 (Lanban) = {(a ∪ c)nb(a ∪ c)n | n ≥ 0}

• Let L2 = L1 ∩ L(a∗bc∗) = {anbcn | n ≥ 0}

• Homomorphism h2 : {a, b, c}∗ → {0, 1}∗ is defined as h2(a) = 0, h2(b) = ε, and h2(c) = 1.

2

– L3 = h2(L2) = {0n1n | n ≥ 0} = L0n1n

• Now if Lanban is regular then so are L1, L2, L3, and L0n1n. But L0n1n is not regular, and so
L is not regular.

Example III

Proposition 8. Lneq = {w1w2 | w1, w2 ∈ {0, 1}∗, |w1| = |w2|, but w1 6= w2} is not regular.

Proof. As before there are two ways to show this result. First we can show that if M with initial
state q0 is a DFA recognizing Lww, then on any two (different) strings in W = {0, 1}∗, M must be
in different states. This is because, suppose on x, y ∈ {0, 1}∗, δ̂M (q0, x) = δ̂(q0, y) then δ̂M (q0, xy) =

δ̂M (q0, yy). But xy ∈ Lneq and yy 6∈ Lneq, giving us the desired contradiction. Thus, M must have
infinitely many states (since |W | is infinite), contradicting the fact that M is a finite automaton.

Another proof uses closure properties. Consider the following sequence of languages.

• Let h1 : {0, 1,#}∗ → {0, 1}∗ be a homomorphism such that h1(0) = 1, h1(1) = 1 and
h1(#) = ε. Consider

L1 = h−1
1 (Lneq)∩L((0∪1)∗#(0∪1)∗) = {w1#w2|w1, w2 ∈ {0, 1}∗, |w1|+|w2| is even, and w1 6= w2}

• L2 = {0, 1,#}∗ \ L1

• L3 = L1 ∩ L((0 ∪ 1)∗#(0 ∪ 1)∗) ∩ (({0, 1,#}{0, 1,#})∗{0, 1,#}) = {w1#w2 | w1, w2 ∈
{0, 1}∗, and w1 = w2}

• Let h2 : {0, 1, 0̄, 1̄,#}∗ → {0, 1,#}∗ be a homomorphism where h2(0) = h2(0̄) = 0, h2(1) =
h2(1̄) = 1 and h2(#) = #. Let L4 = h−1

2 (L3) ∩ L((0̄ ∪ 1̄)∗#(0 ∪ 1)∗). Observe that

L4 = {w1#w2 | w1 ∈ {0̄, 1̄}∗, w2 ∈ {0, 1}∗ and w1 is same as w2 except for the bars}

• Let h3 : {0, 1, 0̄, 1̄,#}∗ → {0, 1}∗ be the homomorphism where h3(0̄) = 0, h3(1̄) = h3(#) =
h3(1) = ε, and h3(0) = 1. Observe that h3(L4) = L0n1n.

Due the closure properties of the regular languages, if Lneq is regular, then so are L1, L2, L3, L4, h3(L4 =
L0n1n. But since L0n1n is not regular, Lneq is not regular.

Lessons on Expressivity

Limits of Finite Memory
Finite automata cannot

• “keep track of counts”: e.g., L0n1n not regular.

• “compare far apart pieces” of the input: e.g. Lxx not regular.

• do “computations that require it to look at global properties” of the input.

3

	Expressiveness
	Finite Languages
	Non-Regular Languages

	Proving Non-regularity
	Lower Bound Method
	Using Closure Properties

