1 Closure Properties

Closure Properties

- Recall that we can carry out operations on one or more languages to obtain a new language
- Very useful in studying the properties of one language by relating it to other (better understood) languages
- Most useful when the operations are sophisticated, yet are guaranteed to preserve interesting properties of the language.
- Today: A variety of operations which preserve regularity
- i.e., the universe of regular languages is closed under these operations

Definition 1. Regular Languages are closed under an operation op on languages if

$$
L_{1}, L_{2}, \ldots L_{n} \text { regular } \Longrightarrow L=\operatorname{op}\left(L_{1}, L_{2}, \ldots L_{n}\right) \text { is regular }
$$

1.1 Boolean Operators

Operations from Regular Expressions

Proposition 2. Regular Languages are closed under \cup, ○ and *.
Proof. (Summarizing previous arguments.)

- L_{1}, L_{2} regular $\Longrightarrow \exists$ regexes R_{1}, R_{2} s.t. $L_{1}=\mathbf{L}\left(R_{1}\right)$ and $L_{2}=\mathbf{L}\left(R_{2}\right)$.
$-\Longrightarrow L_{1} \cup L_{2}=\mathbf{L}\left(R_{1} \cup R_{2}\right) \Longrightarrow L_{1} \cup L_{2}$ regular.
$-\Longrightarrow L_{1} \circ L_{2}=\mathbf{L}\left(R_{1} \circ R_{2}\right) \Longrightarrow L_{1} \circ L_{2}$ regular.
$-\Longrightarrow L_{1}^{*}=\mathbf{L}\left(R_{1}^{*}\right) \Longrightarrow L_{1}^{*}$ regular.

Closure Under Complementation

Proposition 3. Regular Languages are closed under complementation, i.e., if L is regular then $\bar{L}=\Sigma^{*} \backslash L$ is also regular.

Proof. - If L is regular, then there is a DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ such that $L=L(M)$.

- Then, $\bar{M}=\left(Q, \Sigma, \delta, q_{0}, Q \backslash F\right)$ (i.e., switch accept and non-accept states) accepts \bar{L}.

What happens if M (above) was an $N F A$? \qquad
Closure under \cap

Proposition 4. Regular Languages are closed under intersection, i.e., if L_{1} and L_{2} are regular then $L_{1} \cap L_{2}$ is also regular.

Proof. Observe that $L_{1} \cap L_{2}=\overline{\overline{L_{1}} \cup \overline{L_{2}}}$. Since regular languages are closed under union and complementation, we have

- $\overline{L_{1}}$ and $\overline{L_{2}}$ are regular
- $\overline{L_{1}} \cup \overline{L_{2}}$ is regular
- Hence, $L_{1} \cap L_{2}=\overline{\overline{L_{1}} \cup \overline{L_{2}}}$ is regular.

Is there a direct proof for intersection (yielding a smaller DFA)?

Cross-Product Construction

Let $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ and $M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$ be DFAs recognizing L_{1} and L_{2}, respectively.

Idea: Run M_{1} and M_{2} in parallel on the same input and accept if both M_{1} and M_{2} accept.
Consider $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ defined as follows

- $Q=Q_{1} \times Q_{2}$
- $q_{0}=\left\langle q_{1}, q_{2}\right\rangle$
- $\delta\left(\left\langle p_{1}, p_{2}\right\rangle, a\right)=\left\langle\delta_{1}\left(p_{1}, a\right), \delta_{2}\left(p_{2}, a\right)\right\rangle$
- $F=F_{1} \times F_{2}$
M accepts $L_{1} \cap L_{2}$ (exercise)
What happens if M_{1} and M_{2} where NFAs? Still works! Set $\delta\left(\left\langle p_{1}, p_{2}\right\rangle, a\right)=\delta_{1}\left(p_{1}, a\right) \times \delta_{2}\left(p_{2}, a\right)$.

An Example

1.2 Homomorphisms

Homomorphism

Definition 5. A homomorphism is function $h: \Sigma^{*} \rightarrow \Delta^{*}$ defined as follows:

- $h(\epsilon)=\epsilon$ and for $a \in \Sigma, h(a)$ is any string in Δ^{*}
- For $a=a_{1} a_{2} \ldots a_{n} \in \Sigma^{*}(n \geq 2), h(a)=h\left(a_{1}\right) h\left(a_{2}\right) \ldots h\left(a_{n}\right)$.
- A homomorphism h maps a string $a \in \Sigma^{*}$ to a string in Δ^{*} by mapping each character of a to a string $h(a) \in \Delta^{*}$
- A homomorphism is a function from strings to strings that "respects" concatenation: for any $x, y \in \Sigma^{*}, h(x y)=h(x) h(y)$. (Any such function is a homomorphism.)

Example 6. $h:\{0,1\} \rightarrow\{a, b\}^{*}$ where $h(0)=a b$ and $h(1)=b a$. Then $h(0011)=a b a b b a b a$

Homomorphism as an Operation on Languages

Definition 7. Given a homomorphism $h: \Sigma^{*} \rightarrow \Delta^{*}$ and a language $L \subseteq \Sigma^{*}$, define $h(L)=$ $\{h(w) \mid w \in L\} \subseteq \Delta^{*}$.

Example 8. Let $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ and $h(0)=a b$ and $h(1)=b a$. Then $h(L)=\left\{(a b)^{n}(b a)^{n} \mid n \geq 0\right\}$
Proposition 9. For any languages L_{1} and L_{2}, the following hold: $h\left(L_{1} \cup L_{2}\right)=h\left(L_{1}\right) \cup h\left(L_{2}\right)$; $h\left(L_{1} \circ L_{2}\right)=h\left(L_{1}\right) \circ h\left(L_{2}\right) ;$ and $h\left(L_{1}^{*}\right)=h\left(L_{1}\right)^{*}$.

Proof. Left as exercise.

Closure under Homomorphism

Proposition 10. Regular languages are closed under homomorphism, i.e., if L is a regular language and h is a homomorphism, then $h(L)$ is also regular.

Proof. We will use the representation of regular languages in terms of regular expressions to argue this.

- Define homomorphism as an operation on regular expressions
- Show that $\mathbf{L}(h(R))=h(\mathbf{L}(R))$
- Let R be such that $L=\mathbf{L}(R)$. Let $R^{\prime}=h(R)$. Then $h(L)=\mathbf{L}\left(R^{\prime}\right)$.

Homomorphism as an Operation on Regular Expressions

Definition 11. For a regular expression R, let $h(R)$ be the regular expression obtained by replacing each occurence of $a \in \Sigma$ in R by the string $h(a)$.

Example 12. If $R=(0 \cup 1)^{*} 001(0 \cup 1)^{*}$ and $h(0)=a b$ and $h(1)=b c$ then $h(R)=(a b \cup b c)^{*} a b a b b c(a b \cup$ $b c)^{*}$

Formally $h(R)$ is defined inductively as follows.

$$
\begin{array}{ll}
h(\emptyset)=\emptyset & h\left(R_{1} R_{2}\right)=h\left(R_{1}\right) h\left(R_{2}\right) \\
h(\epsilon)=\epsilon & h\left(R_{1} \cup R_{2}\right)=h\left(R_{2}\right) \cup h\left(R_{2}\right) \\
h(a)=h(a) & h\left(R^{*}\right)=(h(R))^{*}
\end{array}
$$

Proof of Claim

Claim

For any regular expression $R, \mathbf{L}(h(R))=h(\mathbf{L}(R))$.
Proof. By induction on the number of operations in R

- Base Cases: For $R=\epsilon$ or $\emptyset, h(R)=R$ and $h(\mathbf{L}(R))=\mathbf{L}(R)$. For $R=a, L(R)=\{a\}$ and $h(\mathbf{L}(R))=\{h(a)\}=\mathbf{L}(h(a))=\mathbf{L}(h(R))$. So claim holds.
- Induction Step: For $R=R_{1} \cup R_{2}$, observe that $h(R)=h\left(R_{1}\right) \cup h\left(R_{2}\right)$ and $h(\mathbf{L}(R))=$ $h\left(\mathbf{L}\left(R_{1}\right) \cup \mathbf{L}\left(R_{2}\right)\right)=h\left(\mathbf{L}\left(R_{1}\right)\right) \cup h\left(\mathbf{L}\left(R_{2}\right)\right)$. By induction hypothesis, $h\left(\mathbf{L}\left(R_{i}\right)\right)=\mathbf{L}\left(h\left(R_{i}\right)\right)$ and so $h(\mathbf{L}(R))=\mathbf{L}\left(h\left(R_{1}\right) \cup h\left(R_{2}\right)\right)$
Other cases $\left(R=R_{1} R_{2}\right.$ and $\left.R=R_{1}^{*}\right)$ similar.

1.3 Inverse Homomorphism

Inverse Homomorphism

Definition 13. Given homomorphism $h: \Sigma^{*} \rightarrow \Delta^{*}$ and $L \subseteq \Delta^{*}, h^{-1}(L)=\left\{w \in \Sigma^{*} \mid h(w) \in L\right\}$ $h^{-1}(L)$ consists of strings whose homomorphic images are in L

Inverse Homomorphism

Example 14. Let $\Sigma=\{a, b\}$, and $\Delta=\{0,1\}$. Let $L=(00 \cup 1)^{*}$ and $h(a)=01$ and $h(b)=10$.

- $h^{-1}(1001)=\{b a\}, h^{-1}(010110)=\{a a b\}$
- $h^{-1}(L)=(b a)^{*}$
- What is $h\left(h^{-1}(L)\right)$? $(1001)^{*} \subsetneq L$

Note: In general $h\left(h^{-1}(L)\right) \subseteq L \subseteq h^{-1}(h(L))$, but neither containment is necessarily an equality.

Closure under Inverse Homomorphism

Proposition 15. Regular languages are closed under inverse homomorphism, i.e., if L is regular and h is a homomorphism then $h^{-1}(L)$ is regular.

Proof. We will use the representation of regular languages in terms of $D F A$ to argue this.
Given a DFA M recognizing L, construct an DFA M^{\prime} that accepts $h^{-1}(L)$

- Intuition: On input $w M^{\prime}$ will run M on $h(w)$ and accept if M does.

Closure under Inverse Homomorphism

- Intuition: On input $w M^{\prime}$ will run M on $h(w)$ and accept if M does.

Example 16. $L=L\left((00 \cup 1)^{*}\right) . h(a)=01, h(b)=10$.

Figure 1: Transitions of automaton M accepting language L is shown in gray. The transitions of automaton accepting $h^{-1}(L)$ are shown in red.

Closure under Inverse Homomorphism

Formal Construction

- Let $M=\left(Q, \Delta, \delta, q_{0}, F\right)$ accept $L \subseteq \Delta^{*}$ and let $h: \Sigma^{*} \rightarrow \Delta^{*}$ be a homomorphism
- Define $M^{\prime}=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$, where
- $Q^{\prime}=Q$
- $q_{0}^{\prime}=q_{0}$
- $F^{\prime}=F$, and
- $\delta^{\prime}(q, a)=q^{\prime}$ where $\hat{\delta}_{M}(q, h(a))=\left\{q^{\prime}\right\} ; M^{\prime}$ on input a simulates M on $h(a)$
- M^{\prime} accepts $h^{-1}(L)$ because $\forall w . \hat{\delta}_{M^{\prime}}\left(q_{0}, w\right)=\hat{\delta}_{M}\left(q_{0}, h(w)\right)$ (which you show by induction on $w)$.

2 Applications of Closure Properties

Example I

Definition 17. For a language $L \subseteq \Sigma^{*}$, define $\operatorname{suffix}(L)=\left\{v \in \Sigma^{*} \mid\right.$ existsu $\in \Sigma^{*}$. $\left.u v \in L\right\}$.
Proposition 18. Regular languages are closed under the suffix (\cdot) operator. That is, if L is regular then $\operatorname{suffix}(L)$ is also regular.

Proof. Solved in homework 3, problem 3. We will give another proof using closure properties.

- For an alphabet Σ, let $\bar{\Sigma}=\{\bar{a} \mid a \in \Sigma\}$.
- Define the homomorphisms unbar : $(\Sigma \cup \bar{\Sigma})^{*} \rightarrow \Sigma^{*}$ and rembar : $(\Sigma \cup \bar{\Sigma})^{*} \rightarrow \Sigma^{*}$ as

$$
\begin{array}{ll}
\operatorname{unbar}(\bar{a})=a \text { for } \bar{a} \in \bar{\Sigma} & \operatorname{unbar}(a)=a \text { for } a \in \Sigma \\
\operatorname{rembar}(\bar{a})=\epsilon \text { for } \bar{a} \in \bar{\Sigma} & \operatorname{rembar}(a)=a \text { for } a \in \Sigma
\end{array}
$$

- Let $L_{1}=\operatorname{unbar}^{-1}(L)$; since L is regular and regular languages are closed under inverse homomorphisms, L_{1} is regular.
- Let $L_{2}=L_{1} \cap \bar{\Sigma}^{*} \Sigma^{*} ; L_{2}$ is regular because regular languages are closed under intersection.
- Observe that $\operatorname{suffix}(L)=\operatorname{rembar}\left(L_{2}\right)$. Thus $\operatorname{suffix}(L)$ is regular.

Example II

Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA. Consider

$$
L=\{w \mid M \text { accepts } w \text { and } M \text { visits every state at least once on input } w\}
$$

Is L regular?
Note that M does not necessarily accept all strings in $L ; L \subseteq \mathbf{L}(M)$.
By applying a series of regularity preserving operations to $\mathbf{L}(M)$ we will construct L, thus showing that L is regular

Computations: Valid and Invalid

- Consider an alphabet Δ consisting of $[p a q]$ where $p, q \in Q, a \in \Sigma$ and $\delta(p, a)=q$. So symbols of Δ represent transitions of M.
- Let $h: \Delta \rightarrow \Sigma^{*}$ be a homomorphism such that $h([p a q])=a$
- $L_{1}=h^{-1}(\mathbf{L}(M)) ; L_{1}$ contains strings of $\mathbf{L}(M)$ where each symbol is associated with a pair of states that represent some transition
- Some strings of L_{1} represent valid computations of M. But there are also other strings in L_{1} which do not correspond to valid computations of M
- We will first remove all the strings from L_{1} that correspond to invalid computations, and then remove those that do not visit every state at least once.

Only Valid Computations

Strings of Δ^{*} that represent valid computations of M satisfy the following conditions

- The first state in the first symbol must be q_{0}

$$
L_{2}=L_{1} \cap\left(\left(\left[q_{0} a_{1} q_{1}\right] \cup\left[q_{0} a_{2} q_{2}\right] \cup \cdots \cup\left[q_{0} a_{k} q_{k}\right]\right) \Delta^{*}\right)
$$

($\left[q_{0} a_{1} q_{1}\right], \ldots\left[q_{0} a_{k} q_{k}\right]$ are all the transitions out of q_{0} in M)

- The first state in one symbol must equal the second state in previous symbol

$$
L_{3}=L_{2} \backslash\left(\Delta^{*}\left(\sum_{q \neq r}[p a q][r b s]\right) \Delta^{*}\right)
$$

Remove "invalid" sequences from L_{2}. Difference of two regular languages is regular (why?). So L_{3} is regular.

- The second state of the last symbol must be in F. Holds trivially because L_{3} only contains strings accepted by M

Example continued

So far, regular language $L_{3}=$ set of strings in Δ^{*} that represent valid computations of M.

- Let $E_{q} \subseteq \Delta$ be the set of symbols where q appears neither as the first nor the second state. Then E_{q}^{*} is the set of strings where q never occurs.
- We remove from L_{3} those strings where some $q \in Q$ never occurs

$$
L_{4}=L_{3} \backslash\left(\bigcup_{q \in Q} E_{q}^{*}\right)
$$

- Finally we discard the state components in L_{4}

$$
L=h\left(L_{4}\right)
$$

- Hence, L is regular.

2.1 In a nutshell ...

Proving Regularity using Closure Properties

How can one show that L is a regular language?

- Construct a DFA or NFA or regular expression recognizing L
- Or, show that L can be obtained from known regular languages $L_{1}, L_{2}, \ldots L_{k}$ through regularity preserving operations

A list of Regularity-Preserving Operations

Regular languages are closed under the following operations.

- Regular Expression operations
- Boolean operations: union, intersection, complement
- Homomorphism
- Inverse Homomorphism
(And several other operations...)

