1 Equivalence of Finite Automata and Regular Expressions

Finite Automata Recognize Regular Languages

Theorem 1. L is a regular language iff there is a regular expression R such that $\mathbf{L}(R)=L$ iff there is a DFA M such that $\mathbf{L}(M)=L$ iff there is a NFA N such that $\mathbf{L}(N)=L$.
i.e., regular expressions, DFAs and NFAs have the same computational power.

Proof. - Given regular expression R, will construct $N F A N$ such that $\mathbf{L}(N)=\mathbf{L}(R)$

- Given DFA M, will construct regular expression R such that $\mathbf{L}(M)=\mathbf{L}(R)$

2 Regular Expressions to NFA

Regular Expressions to Finite Automata

... to Non-determinstic Finite Automata
Lemma 2. For any regex R, there is an NFA N_{R} s.t. $\mathbf{L}\left(N_{R}\right)=\mathbf{L}(R)$.

Proof Idea

We will build the NFA N_{R} for R, inductively, based on the number of operators in $R, \#(R)$.

- Base Case: $\#(R)=0$ means that R is \emptyset, ϵ, or a (from some $a \in \Sigma$). We will build NFAs for these cases.
- Induction Hypothesis: Assume that for regular expressions R, with $\#(R)<n$, there is an NFA N_{R} s.t. $\mathbf{L}\left(N_{R}\right)=\mathbf{L}(R)$.
- Induction Step: Consider R with $\#(R)=n$. Based on the form of R, the NFA N_{R} will be built using the induction hypothesis.

Regular Expression to NFA

Base Cases

If R is an elementary regular expression, NFA N_{R} is constructed as follows.

Induction Step: Union

Case $R=R_{1} \cup R_{2}$
By induction hypothesis, there are N_{1}, N_{2} s.t. $\mathbf{L}\left(N_{1}\right)=\mathbf{L}\left(R_{1}\right)$ and $\mathbf{L}\left(N_{2}\right)=\mathbf{L}\left(R_{2}\right)$. Build NFA N s.t. $\mathbf{L}(N)=\mathbf{L}\left(N_{1}\right) \cup \mathbf{L}\left(N_{2}\right)$

Figure 1: NFA for $\mathbf{L}\left(N_{1}\right) \cup \mathbf{L}\left(N_{2}\right)$

Induction Step: Union

Formal Definition
Case $R=R_{1} \cup R_{2}$
Let $N_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ and $N_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$ (with $Q_{1} \cap Q_{2}=\emptyset$) be such that $\mathbf{L}\left(N_{1}\right)=$ $\mathbf{L}\left(R_{1}\right)$ and $\mathbf{L}\left(N_{2}\right)=\mathbf{L}\left(R_{2}\right)$. The NFA $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is given by

- $Q=Q_{1} \cup Q_{2} \cup\left\{q_{0}\right\}$, where $q_{0} \notin Q_{1} \cup Q_{2}$
- $F=F_{1} \cup F_{2}$
- δ is defined as follows

$$
\delta(q, a)= \begin{cases}\delta_{1}(q, a) & \text { if } q \in Q_{1} \\ \delta_{2}(q, a) & \text { if } q \in Q_{2} \\ \left\{q_{1}, q_{2}\right\} & \text { if } q=q_{0} \\ \emptyset & \text { otherwise } a=\epsilon\end{cases}
$$

Induction Step: Union

Correctness Proof
Need to show that $w \in \mathbf{L}(N)$ iff $w \in \mathbf{L}\left(N_{1}\right) \cup \mathbf{L}\left(N_{2}\right)$.
$\Rightarrow w \in \underset{w}{\mathbf{L}}(N)$ implies $q_{0} \xrightarrow{w}{ }_{N} q$ for some $q \in F$. Based on the transitions out of $q_{0}, q_{0}{ }^{\epsilon}{ }_{N}$ $q_{1} \xrightarrow{w} N q$ or $q_{0}{ }_{N}^{\epsilon} q_{2}{ }^{w}{ }_{N} q$. Consider $q_{0}{ }^{\epsilon}{ }_{N} q_{1} \xrightarrow{w} N q$. (Other case is similar) This means $q_{1} \xrightarrow{w} N_{1} q$ (as N has the same transition as N_{1} on the states in Q_{1}) and $q \in F_{1}$. This means $w \in \mathbf{L}\left(N_{1}\right)$.
$\Leftarrow w \in \mathbf{L}\left(N_{1}\right) \cup \mathbf{L}\left(N_{2}\right)$. Consider $w \in \mathbf{L}\left(N_{1}\right)$; case of $w \in \mathbf{L}\left(N_{2}\right)$ is similar. Then, $q_{1} \xrightarrow{w} N_{N_{1}} q$ for some $q \in F_{1}$. Thus, $q_{0}{ }^{\epsilon}{ }_{N} q_{1}{ }_{N} q$, and $q \in F$. This means that $w \in \mathbf{L}(N)$.

Induction Step: Concatenation

Case $R=R_{1} \circ R_{2}$

- By induction hypothesis, there are N_{1}, N_{2} s.t. $\mathbf{L}\left(N_{1}\right)=\mathbf{L}\left(R_{1}\right)$ and $\mathbf{L}\left(N_{2}\right)=\mathbf{L}\left(R_{2}\right)$
- Build NFA N s.t. $\mathbf{L}(N)=\mathbf{L}\left(N_{1}\right) \circ \mathbf{L}\left(N_{2}\right)$

Figure 2: NFA for $\mathbf{L}\left(N_{1}\right) \circ \mathbf{L}\left(N_{2}\right)$

Induction Step: Concatenation

Formal Definition
Case $R=R_{1} \circ R_{2}$
Let $N_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ and $N_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$ (with $Q_{1} \cap Q_{2}=\emptyset$) be such that $\mathbf{L}\left(N_{1}\right)=$ $\mathbf{L}\left(R_{1}\right)$ and $\mathbf{L}\left(N_{2}\right)=\mathbf{L}\left(R_{2}\right)$. The NFA $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is given by

- $Q=Q_{1} \cup Q_{2}$
- $q_{0}=q_{1}$
- $F=F_{2}$
- δ is defined as follows

$$
\delta(q, a)= \begin{cases}\delta_{1}(q, a) & \text { if } q \in\left(Q_{1} \backslash F_{1}\right) \text { or } a \neq \epsilon \\ \delta_{1}(q, a) \cup\left\{q_{2}\right\} & \text { if } q \in F_{1} \text { and } a=\epsilon \\ \delta_{2}(q, a) & \text { if } q \in Q_{2} \\ \emptyset & \text { otherwise }\end{cases}
$$

Induction Step: Concatenation

Correctness Proof
Need to show that $w \in \mathbf{L}(N)$ iff $w \in \mathbf{L}\left(N_{1}\right) \circ \mathbf{L}\left(N_{2}\right)$.
$w \in \mathbf{L}(N)$ iff $q_{0} \xrightarrow{w}{ }_{N} q$ for some $q \in F=F_{2}$. The computation of N on w starts in a state of N_{1} (namely, $q_{0}=q_{1}$) and ends in a state of N_{2} (namely, $q \in F_{2}$). The only transitions from a state of N_{1} to a state of N_{2} is from a state in F_{1} which have ϵ-transitions to q_{2}, the initial state of N_{2}. Thus, we have

$$
\begin{gathered}
q_{0}=q_{1} \xrightarrow{w}_{N} q \text { with } q \in F=F_{2} \\
\text { iff } \\
\exists q^{\prime} \in F_{1} . \exists u, v \in \Sigma^{*} . w=u v \text { and } q_{0}=q_{1} \xrightarrow{u} N q^{\prime} \xrightarrow{\epsilon}_{N} q_{2} \xrightarrow{v}_{N} q
\end{gathered}
$$

This means that $q_{1} \xrightarrow{u} N_{1} q^{\prime}$ (with $q^{\prime} \in F_{1}$) and $q_{2} \xrightarrow{v} N_{2} q$ (with $q \in F_{2}$). Hence, $u \in \mathbf{L}\left(N_{1}\right)$ and $v \in \mathbf{L}\left(N_{2}\right)$, and so $w=u v \in \mathbf{L}\left(N_{1}\right) \circ \mathbf{L}\left(N_{2}\right)$. Conversely, if $u \in \mathbf{L}\left(N_{1}\right)$ and $v \in \mathbf{L}\left(N_{2}\right)$ then for some $q^{\prime} \in F_{1}$ and $q \in F_{2}$, we have $q_{1}{ }^{u} N_{N_{1}} q^{\prime}$ and $q_{2}{ }^{v} N_{2} q$. Then,

$$
q_{0}=q_{1} \xrightarrow{u}_{N} q^{\prime} \xrightarrow{\epsilon}_{N} q_{2} \xrightarrow{v}_{N} q
$$

Thus, $q_{0} \xrightarrow{w=u v}{ }_{N} q$ and so $u v \in \mathbf{L}(N)$.

Induction Step: Kleene Closure

First Attempt
Case $R=R_{1}^{*}$

- By induction hypothesis, there is N_{1} s.t. $\mathbf{L}\left(N_{1}\right)=\mathbf{L}\left(R_{1}\right)$
- Build NFA N s.t. $\mathbf{L}(N)=\left(\mathbf{L}\left(N_{1}\right)\right)^{*}$

Figure 3: NFA accepts $\left(\mathbf{L}\left(N_{1}\right)\right)^{+}$
Problem: May not accept ϵ ! One can show that $\mathbf{L}(N)=\left(\mathbf{L}\left(N_{1}\right)\right)^{+}$.

Induction Step: Kleene Closure

Second Attempt
Case $R=R_{1}^{*}$

- By induction hypothesis, there is N_{1} s.t. $\mathbf{L}\left(N_{1}\right)=\mathbf{L}\left(R_{1}\right)$
- Build NFA N s.t. $\mathbf{L}(N)=\left(\mathbf{L}\left(N_{1}\right)\right)^{*}$

Figure 4: NFA accepts $\supseteq\left(\mathbf{L}\left(N_{1}\right)\right)^{*}$
Problem: May accept strings that are not in $\left(\mathbf{L}\left(N_{1}\right)\right)^{*}$!

Example demonstrating the problem

Figure 5: Example NFA N

Figure 6: Incorrect Kleene Closure of N
$\mathbf{L}(N)=(0 \cup 1)^{*} 1(0 \cup 1)^{*}$. Thus, $(\mathbf{L}(N))^{*}=\epsilon \cup(0 \cup 1)^{*} 1(0 \cup 1)^{*}$. The previous construction, gives an NFA that accepts $0 \notin(\mathbf{L}(N))^{*}!$

Induction Step: Kleene Closure

Correct Construction
Case $R=R_{1}^{*}$

- First build N_{1} s.t. $\mathbf{L}\left(N_{1}\right)=\mathbf{L}\left(R_{1}\right)$
- Given N_{1} build NFA N s.t. $\mathbf{L}(N)=\mathbf{L}\left(N_{1}\right)^{*}$

Figure 7: NFA for $\mathbf{L}\left(N_{1}\right)^{*}$

Induction Step: Kleene Closure

Formal Definition
Case $R=R_{1}^{*}$
Let $N_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ be such that $\mathbf{L}\left(N_{1}\right)=\mathbf{L}\left(R_{1}\right)$. The NFA $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is given by

- $Q=Q_{1} \cup\left\{q_{0}\right\}$ with $q_{0} \notin Q_{1}$
- $F=F_{1} \cup\left\{q_{0}\right\}$
- δ is defined as follows

$$
\delta(q, a)= \begin{cases}\delta_{1}(q, a) & \text { if } q \in\left(Q_{1} \backslash F_{1}\right) \text { or } a \neq \epsilon \\ \delta_{1}(q, a) \cup\left\{q_{1}\right\} & \text { if } q \in F_{1} \text { and } a=\epsilon \\ \left\{q_{1}\right\} & \text { if } q=q_{0} \text { and } a=\epsilon \\ \emptyset & \text { otherwise }\end{cases}
$$

Proof of correctness left as an exercise.

Regular Expressions to NFA

To Summarize
We built an NFA N_{R} for each regular expression R inductively

- When R was an elementary regular expression, we gave an explicit construction of an NFA recognizing $\mathbf{L}(R)$
- When $R=R_{1}$ op R_{2} (or $R=\mathrm{op}\left(R_{1}\right)$), we constructed an NFA N for R, using the NFAs for R_{1} and R_{2}.

Regular Expressions to NFA

An Example
Build NFA for $(1 \cup 01)^{*}$

3 DFAs to Regular Expressions

DFA to Regular Expression

- Given DFA M, will construct regular expression R such that $L(M)=L(R)$. In two steps:
- Construct a "Generalized NFA" (GNFA) G from the DFA M
- And then convert G to a regex R

3.1 Generalized NFA

Generalized NFA

- A GNFA is similar to an NFA, but:
- There is a single accept state which is not the start state.
- The start state has no incoming transitions, and the accept state has no outgoing transitions.
* These are "cosmetic changes": Any NFA can be converted to an equivalent NFA of this kind.
- The transitions are labeled not by characters in the alphabet, but by regular expressions.
* For every pair of states $\left(q_{1}, q_{2}\right)$, the transition from q_{1} to q_{2} is labeled by a regular expression $\rho\left(q_{1}, q_{2}\right)$.
- "Generalized NFA" because a normal NFA has transitions labeled by ϵ, elements in Σ (a union of elements, if multiple edges between a pair of states) and \emptyset (missing edges).

Generalized NFA

- Transition: GNFA non-deterministically reads a block of characters from the input, chooses an edge from the current state q_{1} to another state q_{2}, and if the block of symbols matches the regex $\rho\left(q_{1}, q_{2}\right)$, then moves to q_{2}.
- Acceptance: G accepts w if there exists some sequence of valid transitions such that on starting from the start state, and after finishing the entire input, G is in the accept state.

Generalized NFA: Example

Figure 8: Example GNFA G
Accepting run of G on 11110100 is $q_{0} \xrightarrow{1} q_{1}{ }^{11}{ }_{G} q_{1} \xrightarrow{101}_{G} q_{1} \xrightarrow{00} q_{2}$

Generalized NFA: Definition

Definition 3. A generalized nondeterministic finite automaton (GNFA) is $G=\left(Q, \Sigma, q_{0}, q_{F}, \rho\right)$, where

- Q is the finite set of states
- Σ is the finite alphabet
- $q_{0} \in Q$ initial state
- $q_{F} \in\left(Q \backslash\left\{q_{0}\right\}\right.$, a single accepting state
- $\rho:\left(Q \backslash\left\{q_{F}\right\}\right) \times\left(Q \backslash\left\{q_{0}\right\}\right) \rightarrow \mathcal{R}_{\Sigma}$, where \mathcal{R}_{Σ} is the set of all regular expressions over the alphabet Σ

Generalized NFA: Definition

Definition 4. For a GNFA $M=\left(Q, \Sigma, q_{0}, q_{F}, \rho\right)$ and string $w \in \Sigma^{*}$, we say M accepts w iff there exist $x_{1}, \ldots, x_{t} \in \Sigma^{*}$ and states r_{0}, \ldots, r_{t} such that

- $w=x_{1} x_{2} x_{3} \cdots x_{t}$
- $r_{0}=q_{0}$ and $r_{t}=q_{F}$
- for each $i \in[1, t], x_{i} \in \mathbf{L}\left(\rho\left(r_{i-1}, r_{i}\right)\right)$,

3.2 Converting DFA to GNFA

Converting DFA to GNFA

A DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ can be easily converted to an equivalent GNFA $G=\left(Q^{\prime}, \Sigma, q_{0}^{\prime}, q_{F}^{\prime}, \rho\right)$:

- $Q^{\prime}=Q \cup\left\{q_{0}^{\prime}, q_{F}^{\prime}\right\}$ where $Q \cap\left\{q_{0}^{\prime}, q_{F}^{\prime}\right\}=\emptyset$
- $\rho\left(q_{1}, q_{2}\right)= \begin{cases}\epsilon, & \text { if } q_{1}=q_{0}^{\prime} \text { and } q_{2}=q_{0} \\ \epsilon, & \text { if } q_{1} \in F \text { and } q_{2}=q_{F}^{\prime} \\ \bigcup_{\left\{a \mid \delta\left(q_{1}, a\right)=q_{2}\right\}} a & \text { otherwise }\end{cases}$

Prove: $\mathbf{L}(G)=\mathbf{L}(M)$.

3.3 Converting GNFA to Regular Expression

GNFA to Regex

- Suppose G is a GNFA with only two states, q_{0} and q_{F}.
- Then $\mathbf{L}(R)=\mathbf{L}(G)$ where $R=\rho\left(q_{0}, q_{F}\right)$.
- How about G with three states?

- Plan: Reduce any GNFA G with $k>2$ states to an equivalent GFA with $k-1$ states.

GNFA to Regex: From k states to $k-1$ states

Definition 5 (Deleting a GNFA State). Given GNFA $G=\left(Q, \Sigma, q_{0}, q_{F}, \rho\right)$ with $|Q|>2$, and any state $q^{*} \in Q \backslash\left\{q_{0}, q_{F}\right\}$, define GNFA $\operatorname{rip}\left(G, q^{*}\right)=\left(Q^{\prime}, \Sigma, q_{0}, q_{F}, \rho^{\prime}\right)$ as follows:

- $Q^{\prime}=Q \backslash\left\{q^{*}\right\}$.
- For any $\left(q_{1}, q_{2}\right) \in Q^{\prime} \backslash\left\{q_{F}\right\} \times Q^{\prime} \backslash\left\{q_{0}\right\}$ (possibly $q_{1}=q_{2}$), let

$$
\rho^{\prime}\left(q_{1}, q_{2}\right)=\left(R_{1} R_{2}^{*} R_{3}\right) \cup R_{4},
$$

where $R_{1}=\rho\left(q_{1}, q^{*}\right), R_{2}=\rho\left(q^{*}, q^{*}\right), R_{3}=\rho\left(q^{*}, q_{2}\right)$ and $R_{4}=\rho\left(q_{1}, q_{2}\right)$.

GNFA to Regex: From k states to $k-1$ states

Correctness

Proposition 6. For any $q^{*} \in Q \backslash\left\{q_{0}, q_{F}\right\}, G$ and $\operatorname{rip}\left(G, q^{*}\right)$ are equivalent.
Proof. Let $G^{\prime}=\operatorname{rip}\left(G, q^{*}\right)$. We need to show that $\mathbf{L}(G)=\mathbf{L}\left(G^{\prime}\right)$. We will prove this in two steps: we will show $\mathbf{L}(G) \subseteq \mathbf{L}\left(G^{\prime}\right)$ and then show $\mathbf{L}\left(G^{\prime}\right) \subseteq \mathbf{L}(G)$.
$\mathbf{L}(G) \subseteq \mathbf{L}\left(G^{\prime}\right):$ First we show $w \in \mathbf{L}(G) \Longrightarrow w \in \mathbf{L}\left(G^{\prime}\right) . w \in \mathbf{L}(G) \Longrightarrow \exists q_{0}=r_{0}, r_{1}, \ldots, r_{t}=q_{F}$ and $x_{1}, \ldots, x_{t} \in \Sigma^{*}$ such that $w=x_{1} x_{2} x_{3} \cdots x_{t}$ and for each $i, x_{i} \in L\left(\rho\left(r_{i-1}, r_{i}\right)\right)$.

We need to show $y_{1}, \ldots, y_{d} \in \Sigma^{*}$ and $q_{0}=s_{0}, s_{1}, \ldots, s_{d}=q_{F}$ such that $w=y_{1} \cdots y_{d}$, and for each $i, y_{i} \in L\left(\rho^{\prime}\left(s_{i-1}, s_{i}\right)\right)$.

Define ($s_{0}=q_{0}, \ldots, s_{d}=q_{F}$) to be the sequence obtained by deleting all occurrences of q^{*} from $\left(r_{0}=q_{0}, r_{1}, \ldots, r_{t}=q_{F}\right)$.

To formally define y_{j}, first we define σ as follows:

$$
\sigma(j)= \begin{cases}0 & \text { if } j=0 \\ i & \text { if } 0<\sigma(j-1)<t, \text { where } i=\min _{i>\sigma(j-1)}\left(r_{i} \neq q^{*}\right) \\ \text { undefined } & \text { otherwise. }\end{cases}
$$

The range of σ is the set of indices i such that $r_{i} \neq q^{*}$. Let $d=\min _{k}(\sigma(k)=t)$. Then, $s_{j}=r_{\sigma(j)}$, for $j=0, \ldots, d$.

Now we define $y_{j}=x_{\sigma(j-1)+1} \cdots x_{\sigma(j)}$ for $j=1, \ldots, d$
Then $y_{1} \cdots y_{d}=x_{1} \cdots x_{t}=w$.
We need to show that $y_{j} \in \mathbf{L}\left(\rho^{\prime}\left(s_{j-1}, s_{j}\right)\right)$ for all j. We consider the following cases for j :

- $\sigma(j)=\sigma(j-1)+1$ (i.e., $\left.r_{\sigma(j-1)+1} \neq q^{*}\right)$. Then $y_{j}=x_{i}$ and $s_{j-1}=r_{i-1}$ and $s_{j}=r_{i}$, where $i=\sigma(j) . y_{j}=x_{i} \in \mathbf{L}\left(\rho\left(r_{i-1}, r_{i}\right)\right) \subseteq \mathbf{L}\left(\rho^{\prime}\left(r_{i-1}, r_{i}\right)\right)=\mathbf{L}\left(\rho^{\prime}\left(s_{j-1}, s_{j}\right)\right)$.
- $\sigma(j)>\sigma(j-1)+1$ (i.e., $\left.r_{\sigma(j-1)+1}=q^{*}\right)$. Then $y_{j}=x_{\ell} \cdots x_{i}$ and $s_{j-1}=r_{\ell-1}$ and $s_{j}=r_{i}$, where $\ell=\sigma(j-1)+1$ and $i=\sigma(j)$.

$$
\begin{aligned}
y_{j}=x_{\ell} \cdots x_{i} & \in \mathbf{L}\left(\rho\left(r_{\ell-1}, r_{\ell}\right) \rho\left(r_{\ell}, r_{\ell+1}\right) \cdots \rho\left(r_{i-1}, r_{i}\right) \rho\left(r_{i}, r_{i+1}\right)\right) \\
& =\mathbf{L}\left(\rho\left(r_{\ell-1}, q^{*}\right) \rho\left(q^{*}, q^{*}\right)^{i-\ell} \rho\left(q^{*}, r_{i}\right)\right) \\
& \subseteq \mathbf{L}\left(\rho\left(r_{\ell-1}, r_{\ell}\right) \rho\left(q^{*}, q^{*}\right)^{*} \rho\left(q^{*}, r_{i}\right)\right) \\
& \subseteq \mathbf{L}\left(\rho\left(s_{j-1}, q^{*}\right) \rho\left(q^{*}, q^{*}\right)^{*} \rho\left(q^{*}, s_{j}\right)\right) \\
& \subseteq \mathbf{L}\left(\rho^{\prime}\left(s_{j-1}, s_{j}\right)\right)
\end{aligned}
$$

Thus $w \in \mathbf{L}\left(G^{\prime}\right)$ as we set out to prove.
$\mathbf{L}\left(G^{\prime}\right) \subseteq \mathbf{L}(G)$: Next we need to show that $w \in \mathbf{L}\left(G^{\prime}\right) \Longrightarrow w \in \mathbf{L}(G) . w \in \mathbf{L}\left(G^{\prime}\right) \Longrightarrow$ $\exists q_{0}=s_{0}, s_{1}, \ldots, s_{d}=q_{F}$ and $y_{1}, \ldots, y_{d} \in \Sigma^{*}$ such that $w=y_{1} y_{2} y_{3} \cdots y_{d}$ and for each $j, y_{j} \in$ $\mathbf{L}\left(\rho^{\prime}\left(s_{j-1}, s_{j}\right)\right)=\mathbf{L}\left(\left(\rho\left(s_{j-1}, q^{*}\right) \rho\left(q^{*}, q^{*}\right)^{*} \rho\left(q^{*}, r_{i}\right)\right) \cup \rho\left(s_{j-1}, s_{j}\right)\right)$

Define σ as follows, for $j=0, \ldots, d$:

$$
\sigma(j)= \begin{cases}0 & \text { if } j=0 \\ \sigma(j-1)+1 & \text { if } y_{j} \in \mathbf{L}\left(\rho\left(s_{j-1}, s_{j}\right)\right) \\ \sigma(j-1)+u+2 & \text { otherwise, where } u=\min _{v}\left(y_{j} \in \mathbf{L}\left(\rho\left(s_{j-1}, q^{*}\right) \rho\left(q^{*}, q^{*}\right)^{v} \rho\left(q^{*}, s_{j}\right)\right)\right)\end{cases}
$$

Let $t=\sigma(d)$. For $i=0, \ldots, t$ define r_{i} as follows:

$$
r(i)= \begin{cases}s_{j} & \text { if there exists } j \text { such that } i=\sigma(j) \\ q^{*} & \text { otherwise }\end{cases}
$$

Finally, define $x_{i}(i=1, \ldots, t)$ as follows: if $i=\sigma(j)$ and $i-1=\sigma(j-1)$, then let $x_{i}=y_{j}$. For other $i(\sigma(j-1)<i-1<i \leq \sigma(j)$ for some $j)$, we have $y_{j} \in \mathbf{L}\left(\rho\left(s_{j-1}, q^{*}\right) \rho\left(q^{*}, q^{*}\right)^{u} \rho\left(q^{*}, s_{j}\right)\right)$ where $u=\sigma(j)-\sigma(j-1)-2$. Therefore we can write $y_{j}=x_{\ell} \cdots x_{\sigma(j)}$, where $\ell=\sigma(j-1)+1$, such that $x_{\ell} \in \mathbf{L}\left(\rho\left(s_{j-1}, q^{*}\right)\right), x_{\sigma(j)} \in \mathbf{L}\left(\rho\left(q^{*}, s_{j}\right)\right)$ and $x_{\ell+1}, \ldots, x_{\sigma(j)-1} \in \mathbf{L}\left(\rho\left(q^{*}, q^{*}\right)\right)$. Verify that all $x_{i}(i=1, \ldots, t)$ are well-defined by this.

With these definitions it can be easily verified that $x_{0} \cdots x_{t}=y_{0} \cdots y_{d}=w$ and $x_{i} \in \mathbf{L}\left(\rho\left(r_{i-1}, r_{i}\right)\right)$.

DFA to Regex: Summary

Lemma 7. For every DFA M, there is a regular expression R such that $\mathbf{L}(M)=\mathbf{L}(R)$.

- Any DFA can be converted into an equivalent GNFA. So let G be a GNFA s.t. $\mathbf{L}(M)=\mathbf{L}(G)$.
- For any GNFA $G=\left(Q, \Sigma, q_{0}, q_{F}, \rho\right)$ with $|Q|>2$, for any $q^{*} \in Q \backslash\left\{q_{0}, q_{F}\right\}, G$ and $\operatorname{rip}\left(G, q^{*}\right)$ are equivalent. $\operatorname{rip}\left(G, q^{*}\right)$ has one fewer state than G.
- So given G, by applying rip repeatedly (choosing q^{*} arbitrarily each time), we can get a GNFA G^{\prime} with two states s.t. $\mathbf{L}(G)=\mathbf{L}\left(G^{\prime}\right)$. Formally, by induction on the number of states in G.
- For a 2-state GNFA $G^{\prime}, \mathbf{L}\left(G^{\prime}\right)=\mathbf{L}(R)$, where $R=\rho\left(q_{0}, q_{F}\right)$.

DFA to Regex: Example

Figure 9: Example DFA D

Figure 10: GNFA G equivalent to D, ignoring transitions labelled \emptyset

Figure 11: Ripping q_{1}

Figure 12: Ripping q_{2}

