1 Equivalence of Finite Automata and Regular Expressions

Finite Automata Recognize Regular Languages

Theorem 1. L is a reqular language iff there is a regular expression R such that L(R) = L iff
there is a DFA M such that L(M) = L iff there is a NFA N such that L(N) = L.

i.e., regular expressions, DFAs and NFAs have the same computational power.
Proof. e Given regular expression R, will construct NFA N such that L(N) = L(R)

e Given DFA M, will construct regular expression R such that L(M) = L(R) O

2 Regular Expressions to NFA

Regular Expressions to Finite Automata
... to Non-determinstic Finite Automata

Lemma 2. For any regex R, there is an NFA Ng s.t. L(Ngr) = L(R).

Proof Idea
We will build the NFA Np for R, inductively, based on the number of operators in R, #(R).

e Base Case: #(R) = 0 means that R is (), ¢, or a (from some a € ). We will build NFAs for
these cases.

e Induction Hypothesis: Assume that for regular expressions R, with #(R) < n, there is an
NFA Ng s.t. L(Ng) = L(R).

e Induction Step: Consider R with #(R) = n. Based on the form of R, the NFA Ng will be
built using the induction hypothesis.

Regular Expression to NFA

Base Cases
If R is an elementary regular expression, NFA Np is constructed as follows.

R=0 4‘
R=c¢ '

O
R=ua



Induction Step: Union

Case R=R;UR>
By induction hypothesis, there are N1, Ny s.t. L(N1) = L(R;) and L(N2) = L(R3). Build NFA N
s.t. L(N) = L(N;) UL(N2)

pO

*)

Figure 1: NFA for L(/N;) UL(N2)

Induction Step: Union
Formal Definition
Case R=R;UR>
Let N1 = (Ql, E,(Shql,Fl) and Ny = (QQ,E,(SQ,QQ,FQ) (With Q1NQy = @) be such that L<N1> =
L(R;) and L(N3) = L(R2). The NFA N = (Q, %, 4§, qo, F) is given by
e Q=0Q1UQ2U{qo}, where qo ¢ Q1 U Q2
e F=F,UF,

e § is defined as follows

61(q,a) ifqge

_ ) d2(q,a) ifqge Qo
oaa) {g1,¢2} fg=qoanda=c¢

0 otherwise

Induction Step: Union
Correctness Proof

Need to show that w € L(N) iff w € L(N;) UL(Na).

= w € L(N) 1mphes qo —>N q for some ¢ € F. Based on the transitions out of qg, g9 — N
g —Nq or o —N @2 —n ¢. Consider ¢ ——n 1 — N q. (Other case is similar) This
means ¢ —>N1 q (as N has the same transition as Nj on the states in Q1) and ¢ € Fy. This
means w € L(Ny).



< w € L(N7) UL(Ny). Consider w € L(Ny); case of w € L(Ny) is similar. Then, q; —y, ¢ for
some g € Fy. Thus, o —n ¢1 —>n ¢, and ¢ € F. This means that w € L(N).

Induction Step: Concatenation

Case R=R; 0o Ry
e By induction hypothesis, there are N1, Ny s.t. L(N;) = L(R;) and L(N2) = L(Rz2)
e Build NFA N s.t. L(N) = L(Ny) o L(Na)

—
P=ONO

Figure 2: NFA for L(N;) o L(Ny)

Induction Step: Concatenation
Formal Definition

Case R=R;0 Ry

Let N1 = (Q1,%,01,q1, F1) and Ny = (Q2,%, 02, g2, F3) (with Q1 N Q2 = @) be such that L(N;) =
L(R;) and L(N2) = L(R2). The NFA N = (Q, %, 6, qo, F') is given by

e Q=0Q1UQ>
® do = q1
o F'=F)

e ¢ is defined as follows

d1(g,a) ifge (Q\Fi)ora#e
) di(g,a)U{q} ifge Fyand a=¢
@9 =9 5y(0.0) if g € Qs
0 otherwise

Induction Step: Concatenation
Correctness Proof

Need to show that w € L(N) iff w € L(N71) o L(N2).



w € L(N) iff gg = ¢ for some g € F = F,. The computation of N on w starts in a state of
N (namely, gy = ¢1) and ends in a state of Ny (namely, ¢ € F5). The only transitions from a state
of N7 to a state of Ny is from a state in F; which have e-transitions to g9, the initial state of Ns.
Thus, we have

qo:qlinvqwithqu:Fg
iff
I e F. uveX. w=uw and go=q —N ¢ —N @2 —N ¢

This means that ¢1 —nx, ¢’ (with ¢/ € F1) and ¢o —=n, ¢ (with ¢ € F). Hence, u € L(N;) and
v € L(N3), and so w = uv € L(Ny)oL(N3). Conversely, if u € L(N7) and v € L(N2) then for some
q € Fy and q € F5, we have q; L>N1 ¢ and g0 L>N2 q. Then,

u ] € v
g0 =q1 —N ¢ —N (g2 —N(

Thus, g “—= n ¢ and so uv € L(N).

Induction Step: Kleene Closure
First Attempt

Case R =R}
e By induction hypothesis, there is Ny s.t. L(N1) = L(Ry)
o Build NFA N s.t. L(N) = (L(Ny))*

Figure 3: NFA accepts (L(Nyp))*

Problem: May not accept €! One can show that L(N) = (L(Np))™.

Induction Step: Kleene Closure
Second Attempt

Case R = R}
e By induction hypothesis, there is Ny s.t. L(N1) = L(Ry)
o Build NFA N s.t. L(N) = (L(N))*



Figure 4: NFA accepts O (L(Ny))*

Problem: May accept strings that are not in (L(Np))*!

Example demonstrating the problem

0,1 0,1

Figure 6: Incorrect Kleene Closure of N

L(N)=(0uU1)*1(0U1)*. Thus, (L(N))* =eU(0U1)*1(0U 1)*. The previous construction, gives
an NFA that accepts 0 ¢ (L(N))*!

Induction Step: Kleene Closure
Correct Construction

Case R = Rj
o First build Ny s.t. L(N;) = L(R;)
e Given N; build NFA N s.t. L(N) = L(NVy)*



Figure 7: NFA for L(N;)*

Induction Step: Kleene Closure
Formal Definition

Case R = Rj
Let N1 = (Q1,%,61,q1, F1) be such that L(N;) = L(R;). The NFA N = (Q, %, 6, qo, F) is given by

* Q=Q1U{q} with g0 ¢ Q1
o F=FU{q}

e § is defined as follows

d1(q; a) ifge(Q\Fi)oraze
) di(g,a)U{q1} ifge Fianda=c¢
0(g,a) = {n1} if g=qpand a=c¢
0 otherwise

Proof of correctness left as an exercise.

Regular Expressions to NFA
To Summarize

We built an NFA Np for each regular expression R inductively

e When R was an elementary regular expression, we gave an explicit construction of an NFA
recognizing L(R)

e When R = Ry op Ry (or R = op(Ry1)), we constructed an NFA N for R, using the NFAs for
Ry and Rs.

Regular Expressions to NFA
An Example

Build NFA for (1U01)*



Nivo1

Nauony-

3 DFAs to Regular Expressions

DFA to Regular Expression

e Given DFA M, will construct regular expression R such that L(M) = L(R). In two steps:

— Construct a “Generalized NFA” (GNFA) G from the DFA M
— And then convert G to a regex R

3.1 Generalized NFA
Generalized NFA

e A GNFA is similar to an NFA, but:

— There is a single accept state which is not the start state.

The start state has no incoming transitions, and the accept state has no outgoing tran-
sitions.

* These are “cosmetic changes”: Any NFA can be converted to an equivalent NFA of
this kind.

— The transitions are labeled not by characters in the alphabet, but by regular expressions.

« For every pair of states (q1,¢2), the transition from ¢ to ¢o is labeled by a regular
expression p(qi, q2).

— “Generalized NFA” because a normal NFA has transitions labeled by ¢, elements in 3
(a union of elements, if multiple edges between a pair of states) and () (missing edges).



Generalized NFA

e Transition: GNFA non-deterministically reads a block of characters from the input, chooses
an edge from the current state q; to another state go, and if the block of symbols matches
the regex p(qi1, g2), then moves to ga.

e Acceptance: G accepts w if there exists some sequence of valid transitions such that on
starting from the start state, and after finishing the entire input, G is in the accept state.

Generalized NFA: Example

10*10*

Figure 8: Example GNFA G

Accepting run of G on 11110100 is qg L>G Q1 A)g Q1 &)G Q1 ﬂ)g Q2

Generalized NFA: Definition

Definition 3. A generalized nondeterministic finite automaton (GNFA) is G = (Q, %, qo, ¢r, p),
where

e () is the finite set of states

e Y is the finite alphabet

qo € @ initial state

qr € (Q\ {qo}, a single accepting state

p: (Q\{gr}) x (Q\ {q}) = Rs, where Ry is the set of all regular expressions over the
alphabet X

Generalized NFA: Definition



Definition 4. For a GNFA M = (Q, X, qo, qr, p) and string w € ¥*, we say M accepts w iff there
exist x1,...,xy € ¥* and states rg, ..., such that

® W = T1X2X3 """ Tt
® 1o =qo and 1 = qp

e for each i € [1,¢], z; € L(p(ri—1,7:)),

3.2 Converting DFA to GNFA

Converting DFA to GNFA
A DFA M = (Q, X, 0, qo, F) can be easily converted to an equivalent GNFA G = (Q', %, ¢, ¢, p):

o Q' =QU{qp qp} where QN {gp, g} =0

€, if g1 = qp and g2 = qo
® p(q1,q2) = | €, if @ € Fand g = q};

U{a|5(¢h,a):q2} a otherwise

@@ )

Prove: L(G) = L(M).

3.3 Converting GNFA to Regular Expression
GNFA to Regex

e Suppose GG is a GNFA with only two states, ¢y and gp.
e Then L(R) = L(G) where R = p(qo,qr).

e How about G with three states?



e Plan: Reduce any GNFA G with k > 2 states to an equivalent GFA with k — 1 states.

GNFA to Regex: From k states to k — 1 states
Definition 5 (Deleting a GNFA State). Given GNFA G = (Q, %, qo, qr, p) with |Q| > 2, and any
state ¢* € Q \ {qo, qr}, define GNFA rip(G, ¢*) = (Q', 2, g0, qF, p') as follows:
o Q' =Q\{q}.
e For any (q1,42) € Q' \ {qr} x Q" \ {qo} (possibly ¢1 = ¢2), let
p'(q1,42) = (R1R3R3) U Ry,

where Ry = p(q1,q"), R2 = p(¢*,q%), R3 = p(q*, q2) and Ry = p(q1, q2)-

GNFA to Regex: From k states to k — 1 states
Correctness

Proposition 6. For any ¢* € Q \ {qo,qr}, G and rip(G,q*) are equivalent.

Proof. Let G' = rip(G, ¢*). We need to show that L(G) = L(G’). We will prove this in two steps:
we will show L(G) C L(G’) and then show L(G’) C L(G).
L(G) C L(G’): First we show w € L(G) = w € L(G'). w € L(G) = 3qo =r0,71,-..,7t = qF
and z1,...,2; € ¥* such that w = x12x923 - - - x; and for each i, x; € L(p(ri—1,7i)).

We need to show y1,...,yq € X* and g9 = sg, s1,...,5¢ = qF such that w = y; - - - y4, and for
each i, y; € L(p'(si—1,8i))-

Define (sp = qo, - .., Sq = qr) to be the sequence obtained by deleting all occurrences of ¢* from
(’l“(] =4q05,7T15---5Tt = qF).

10



To formally define y;, first we define o as follows:

0 if j=0
o(j) =XK1 if 0 <o(j—1) <t, where i = min;sj_1) (1 # ¢*)

undefined otherwise.

The range of o is the set of indices i such that 7; # ¢*. Let d = ming (o (k) =t). Then, s; = 74
for j=0,...,d.

Now we define y; = z,(j_1)41" " Zo(j) for j=1,...,d

Then y1 -+ yg =1 Tt = w.

We need to show that y; € L(p'(sj—1,s;)) for all j. We consider the following cases for j:

i)

e 0(j)=0(j—1)+1 (ie, roj—1)41 # ¢*)- Then y; = ; and s;_1 = r;—1 and s; = r;, where
i=0(j). yj =z € Lp(ri1,7:)) S L(p'(rie1, 1)) = L(p'(sj-1, 55))-

® 0(j) >a(j—1)+1 (ie, roj—1)41 = ¢°). Then y; = x4---x; and s;_1 = 7,1 and s; = 1,
where ¢ =o(j — 1)+ 1 and i = o(j).

—~
=
~
—
<
~
S—
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—
=
S
<
~
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—
S~—

Yj =Tg - Ty S L(p p(h 1a7"z) (Tiar’iJrl))

=L(p(re—1,¢")p(q*, ¢")" " p(q*, 1))
C L(p(re-1,re)p(d",q")p (q*,'r))

C L(p(sj—1, *)P( 4" ) (", s5))

C L(Pl(sjfl’sj))

Thus w € L(G’) as we set out to prove.
L(G') C L(G): Next we need to show that w € L(G') = w € L(G). w € L(GZ) =
dgo = s0,51,---,8¢ = qr and y1,...,yq € X* such that w = y1y2y3---yq and for each j, y; €
L(p'(sj-1,55)) = L ((p(sj—1,4")p(a", ¢")"p(q", 7)) U p(sj-1, 55))

Define ¢ as follows, for j =0,...,d:

0 if j =0,
o(j)=q0(i—1)+1 if y; € L(p(sj-1,55))
o(j —1)+u+2 otherwise, where u = min, (y; € L(p(sj_1,¢%)p(q*,q¢*)"p(q*, s;)))

Let t = o(d). For i =0, ...,t define r; as follows:

*

(i) sj  if there exists j such thati = o(j),
r(i) =
q otherwise.

Finally, define z; (i = 1,...,t) as follows: if i = 0(j) and i — 1 = o(j — 1), then let z; = y;.
For other i (o(j —1) <i—1 <1 < o(j) for some j), we have y; € L(p(sj—1,¢")p(q*,q*)"p(q*, 55))
where u = o(j) — o(j — 1) — 2. Therefore we can write y; = x¢- - 2,(j), where £ = o(j — 1) + 1,
such that z, € L(p(sj-1,9")), Z,(j) € L(p(q*, s;)) and @11, ..., 25 ()-1 € L(p(g™, ¢%)). Verify that
all z; (i =1,...,t) are well-defined by this.

With these definitions it can be easily verified that z¢ - - x; = yo - - - yqg = w and z; € L(p(r;—1,7)).

O
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DFA to Regex: Summary

Lemma 7. For every DFA M, there is a regqular expression R such that L(M) = L(R).

e Any DFA can be converted into an equivalent GNFA. So let G be a GNFA s.t. L(M) = L(G).

e For any GNFA G = (@, X, g0, qF, p) with |Q| > 2, for any ¢* € Q \ {qo,qr}, G and rip(G, ¢*)

are equivalent. rip(G, ¢*) has one fewer state than G.

e So given G, by applying rip repeatedly (choosing ¢* arbitrarily each time), we can get a GNFA
G’ with two states s.t. L(G) = L(G’). Formally, by induction on the number of states in G.

e For a 2-state GNFA G', L(G') = L(R), where R = p(qo, qr)-

DFA to Regex: Example

0
G

Figure 9: Example DFA D
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Figure 11: Ripping q;

13



4’@ 0*1(0U (10*1))* @

Figure 12: Ripping g2

14



	Equivalence of Finite Automata and Regular Expressions
	Regular Expressions to NFA
	DFAs to Regular Expressions
	Generalized NFA
	Converting DFA to GNFA
	Converting GNFA to Regular Expression


