
1 Designing DFAs

1.1 General Method

Typical Problem

Problem
Given a language L, design a DFA M that accepts L, i.e., L(M) = L.

Methodology

• Imagine yourself in the place of the machine, reading symbols of the input, and trying to
determine if it should be accepted.

• Remember at any point you have only seen a part of the input, and you don’t know when it
ends.

• Figure out what to keep in memory. It cannot be all the symbols seen so far: it must fit into
a finite number of bits.

1.2 Examples

Strings containing 0

Problem
Design an automaton that accepts all strings over {0, 1} that contain at least one 0.

Solution
What do you need to remember? Whether you have seen a 0 so far or not!

qnoz qzer

1 0, 1

0

Figure 1: Automaton accepting strings with at least one 0.

Even length strings

Problem
Design an automaton that accepts all strings over {0, 1} that have an even length.
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Solution
What do you need to remember? Whether you have seen an odd or an even number of symbols.

qe qo

0, 1

0, 1

Figure 2: Automaton accepting strings of even length.

Pattern Recognition

Problem
Design an automaton that accepts all strings over {0, 1} that have 001 as a substring, where u is a
substring of w if there are w1 and w2 such that w = w1uw2.

Solution
What do you need to remember? Whether you

• haven’t seen any symbols of the pattern

• have just seen 0

• have just seen 00

• have seen the entire pattern 001

Pattern Recognition Automaton

qε q0 q00 qp

1

0

1

0

0

1

0, 1

Figure 3: Automaton accepting strings having 001 as substring.

grep Problem

Problem
Given text T and string s, does s appear in T?

Näıve Solution
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=s?︷ ︸︸ ︷
=s?︷ ︸︸ ︷

=s?︷ ︸︸ ︷
=s?︷ ︸︸ ︷

=s?︷ ︸︸ ︷
T1 T2 T3 . . . Tn Tn+1 . . . Tt

Running time = O(nt), where |T | = t and |s| = n.

grep Problem
Smarter Solution

Solution

• Build DFA M for L = {w | there are u, v s.t. w = usv}

• Run M on text T

Time = time to build M + O(t)!

Questions

• Is L regular no matter what s is?

• If yes, can M be built “efficiently”?

Knuth-Morris-Pratt (1977): Yes to both the above questions.

Multiples

Problem
Design an automaton that accepts all strings w over {0, 1} such that w is the binary representation
of a number that is a multiple of 5.

Solution
What must be remembered? The remainder when divided by 5.

How do you compute remainders?

• If w is the number n then w0 is 2n and w1 is 2n+ 1.

• (a.b+ c) mod 5 = (a.(b mod 5) + c) mod 5

• e.g. 1011 = 11 (decimal) ≡ 1 mod 5 10110 = 22 (decimal) ≡ 2 mod 5 10111 = 23 (decimal)
≡ 3 mod 5
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Automaton for recognizing Multiples

q0

q1

q4

q2

q3

0
1

0

1
1

0

1

0

0

1

Figure 4: Automaton recognizing binary numbers that are multiples of 5.

A One k-positions from end

Problem
Design an automaton for the language Lk = {w | kth character from end of w is 1}

Solution
What do you need to remember? The last k characters seen so far!

Formally, Mk = (Q, {0, 1}, δ, q0, F )

• States = Q = {〈w〉 | w ∈ {0, 1}∗ and |w| ≤ k}

• δ(〈w〉, b) =

{
〈wb〉 if |w| < k
〈w2w3 . . . wkb〉 if w = w1w2 . . . wk

• q0 = 〈ε〉

• F = {〈1w2w3 . . . wk〉 | wi ∈ {0, 1}}

1.3 Lower Bounds

Lower Bound on DFA size

Proposition 1. Any DFA recognizing Lk has at least 2k states.
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Proof. Let M , with initial state q0, recognize Lk and assume (for contradiction) that M has < 2k

states.

• Number of strings of length k = 2k

• There must be two distinct string w0 and w1 of length k such that for some state q, q0
w0−→M q

and q0
w1−→M q.

Let i be the first position where w0 and w1 differ. Without loss of generality assume that w0

has 0 in the ith position and w1 has 1.

w00
i−1 = . . .

k︷ ︸︸ ︷
0 . . . 0i−1

w10
i−1 = . . .︸︷︷︸

i−1

1 . . .︸︷︷︸
k−i

0i−1

w00
i−1 6∈ Lk and w10

i−1 ∈ Lk. Thus, M cannot accept both w00
i−1 and w10

i−1.
So far, w00

i−1 6∈ Ln, w10
i−1 ∈ Ln, q0

w0−→M q, and q0
w1−→M q.

q0
w00i−1

−→ M q1 iff q
0i−1

−→M q1

iff q0
w10i−1

−→ M q1

Thus, M accepts or rejects both w00
i−1 and w10

i−1. Contradiction!

2 Inductive Proofs for DFAs

2.1 Induction Proofs

Induction Principle

• Infinite sequence of statements S0, S1, . . .

• Goal: Prove ∀i. Si is true

• Prove S0 is true [Base Case]

• For an arbitrary i, assuming Sj is true for all j < i [Induction Hypothesis], establishes Si to
be true [Induction Step].

• Conclude ∀i. Si is true.

Why does induction work?

• Assume S0 is true (Base case holds), and for any i, assuming Sj is true for all j < i, we can
conclude Si is true (Induction step holds).
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• Suppose (for contradiction) Si does not hold for some i.

• Let k be the smallest i such that Si does not hold. Existence of such a smallest k is a
consequence of a property of natural numbers that any non-empty set of natural numbers has
a smallest element in it (Well-ordering principle).

• That means for all j < k, Sj holds.

• Then by the induction step, Sk holds! Contradiction, establishing that Si holds for all i.

2.2 Properties about DFAs

Deterministic Behavior

Proposition 2. For a DFA M = (Q,Σ, δ, q0, F ), and any q ∈ Q, and w ∈ Σ∗, |δ̂M (q, w)| = 1.

Proof. Proof is by induction on |w|. Thus, Si is taken to be

For every q ∈ Q, and w ∈ Σi, |δ̂M (q, w)| = 1.

Base Case: We need to prove the case when w ∈ Σ0. Thus, w = ε. By definition
w−→M , q

w−→M q′

if and only q′ = q. Thus, |δ̂M (q, w)| = |{q}| = 1.

Ind. Hyp.: Suppose for every q ∈ Q, and w ∈ Σ∗ such that |w| < i, |δ̂M (q, w)| = 1.

Ind. Step: Consider (without loss of generality) w = a1a2 · · · ai, such that ai ∈ Σ. Take u =
a1 · · · ai−1

q
w−→M q′ iff there are r0, r1, . . . , ri such that r0 = q, ri = q′, and δ(rj , aj+1) = rj+1

iff there is ri−1 such that q
u−→M ri−1 and δ(ri−1, ai) = q′

Now, by induction hypothesis, since |δ̂M (q, u)| = 1, there is a unique ri−1 such that q
u−→M

ri−1. Also, since from any state ri−1 on symbol ai the next state is uniquely determined,
|δ̂M (q, w)| = 1.

DFA Computation

Proposition 3. Let M = (Q,Σ, δ, q0, F ) be a DFA. For any q1, q2 ∈ Q, u, v ∈ Sigma∗, q1
uv−→M q2

iff there is q ∈ Q such that q1
u−→M q and q

v−→M q2.

Proof. Let u = a1a2 . . . ai and v = ai+1 · · · ai+k. Observe that,

q1
uv−→M q2 iff there are r0, r1, . . . , ri+k such that r0 = q1, ri+k = q2, and δ(rj , aj+1) = rj+1

iff there is ri (= q of the proposition) such that q1
u−→M ri and ri

v−→M q2
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Conventions in Inductive Proofs

“We will prove by induction on |v|” is a short-hand for “We will prove the proposition by induction.
Take Si to be statement of the proposition restricted to strings v where |v| = i.”

2.3 Proving Correctness of DFA Constructions

Proving Correctness of DFAs

Problem
Show that DFA M recognizes language L.

That is, we need to show that for all w, w ∈ L(M) iff w ∈ L. This is often carried out by
induction on |w|.

Example I

q0 q1

0 0

1

1

Figure 5: Transition Diagram of M1

Proposition 4. L(M1) = {w ∈ {0, 1}∗ | w has an odd number of 1s}

Proof. We will prove this by induction on |w|. That is, let Si be

For all w ∈ {0, 1}i. M1 accepts w iff w has an odd number of 1s

Observe that M1 accepts w iff q0
w−→M1 q1. So we could rewrite Si as

For all w ∈ {0, 1}i. q0
w−→M1 q1 iff w has an odd number of 1s

Base Case: When w = ε, w has an even number of 1s. Further, q0
ε−→M1 q0, and so M1 does not

accept w.

Ind. Hyp.: Assume that for all w of length < n, q0
w−→M1 q1 iff w has an odd number of 1s.

Ind. Step: Consider w of length n; without loss of generality, w is either 0u or 1u for some string
u of length i− 1.

If w = 0u then, w has an odd number of 1s iff u has an odd number of 1s, iff (by ind. hyp.)

q0
u−→M1 q1 iff q0

w=0u−→M1 q1 (since δ(q0, 0) = q0).
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On the other hand, if w = 1u then, w has an odd number of 1s iff u has an even number

of 1s. Now q0
w=1u−→M1 q1 iff q1

u−→M1 q1. Does M1 accept u that has an even number of
0s from state q1? Unfortunately, we cannot use the induction hypothesis in this case, as the
hypothesis does not say anything about what strings u are accepted when the automaton is
started from state q1; it only gives the behavior on strings when M1 is started in the initial
state q0. We need to strengthen the hypothesis to make the proof work!! The strengthening
will explicitly tell us the behavior of the machine on strings when starting from states other
than the initial state.

New (correct) induction proof: Let Si be

∀w ∈ {0, 1}i. q0
w−→M1 q1 iff w has an odd number of 1s

and q1
w−→M1 q1 iff w has an even number of 1s

We will prove this sequence of statements by induction.

Base Case: When w = ε, w has an even number of 1s. Further, q0
ε−→M1 q0 and q1

w−→M1 q1,
and so M1 does not accept w from state q0, but accepts w from state q1. This establishes the
base case.

Ind. Hyp.: Assume that for all w of length < n, q0
w−→M1 q1 iff w has an odd number of 1s and

q1
w−→M1 q1 iff w has an even number of 1s.

Ind. Step: Consider w of length n; without loss of generality, w is either 0u or 1u for some string
u of length i− 1.

If w = 0u then, w has an odd number of 1s iff u has an odd number of 1s, iff (by ind. hyp.)

q0
u−→M1 q1 iff q0

w=0u−→M1 q1 (since δ(q0, 0) = q0). And w has an even number of 1s iff u has

an even number of 1s iff (by ind. hyp.) q1
u−→M1 q1 iff q1

w=0u−→M1 q1 (since δ(q1, 0) = q1).

On the other hand, if w = 1u then q0
w=1u−→M1 q1 iff q1

u−→M1 q1 (since δ(q0, 1) = q1) iff
(by ind. hyp.) u has an even number of 1s iff w = 1u has an odd number of 1s. Similarly,

q1
w=1u−→M1 q1 iff q0

u−→M1 q1 (since δ(q1, 1) = q0) iff (by ind. hyp.) u has an odd number of
1s iff w has an even number of 1s.

Remark
The above induction proof can be made to work without strengthening if in the first induction proof
step, we considered w = ua, for a ∈ {0, 1}, instead of w = au as we did. However, the fact that
the induction proof works without strengthening here is a very special case, and does not hold in
general for DFAs.

Example II
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q0 q1

q2q3

1

1

1

1

0 0 0 0

Figure 6: Transition Diagram of M2

Proposition 5. L(M2) = {w ∈ {0, 1}∗ | w has an odd number of 1s and odd number of 0s}

Proof. We will once again prove the proposition by induction on |w|. The straightforward proof
would suggest that we take Si to be

For any w ∈ {0, 1}i. M2 accepts w iff w has an odd number of 1s and 0s

Since M2 accepts w iff q0
w−→M2 q2, we could rewrite the condition as “q0

w−→M2 q2 iff w has an odd
number of 1s and 0s”. The induction proof will unfortunately not go through! To see this, consider
the induction step, when w = 0u. Now, q0

w−→M2 q iff q3
u−→M2 q, because M2 goes to state q3

(from q0) on reading 0. Since w and u have the same parity for the number of 1s, but opposite
parity for the number of 0s, w must be accepted (i.e., reach state q2) iff u is accepted from q3 when
u has an odd number of 1s and even number of 0s. But is that the case? The induction hypothesis
says nothing about strings accepted from state q3, and so the induction step cannot be established.

This is typical of many induction proofs. Again, we must strengthen the proposition in order to
construct a proof. The proposition must not only characterize the strings that are accepted from
the initial state q0, but also those that are accepted from states q1, q2, and q3.

We will show by induction on w that

(a) q0
w−→M2 q2 iff w has an odd number of 0s and odd number of 1s,

(b) q1
w−→M2 q2 iff w has odd number of 0s and even number of 1s,

(c) q2
w−→M2 q2 iff w has an even number of 0s and even number of 1s, and

(d) q3
w−→M2 q2 iff w has even number of 0s and odd number of 1s.

Thus in the our new induction proof, statement Si says that conditions (a),(b),(c), and (d) hold
for all strings of length i.

Base Case: When |w| = 0, w = ε. Observe that w has an even number of 0s and 1s, and q
ε−→M2 q

for any state q. String ε is only accepted from state q2, and thus statements (a),(b),(c), and
(d) hold in the base case.

Ind. Hyp.: Suppose (a),(b),(c),(d) all hold for any string w of length < n.

Ind. Step: Consider w of length n. Without loss of generality, w is of the form au, where a ∈ {0, 1}
and u ∈ {0, 1}n−1.
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• Case q = q0, a = 0: q0
0u−→M2 q2 iff q3

u−→M2 q2 iff u has even number of 0s and odd
number of 1s (by ind. hyp. (d)) iff w has odd number of 0s and odd number of 1s.

• Case q = q0, a = 1: q0
1u−→M2 q2 iff q1

u−→M2 q2 iff u has odd number of 0s and even
number of 1s (by ind. hyp. (b)) iff w has odd number of 0s and odd number of 1s

• Case q = q1, a = 0: q1
0u−→M2 q2 iff q2

u−→M2 q2 iff u has even number of 0s and even
number of 1s (by ind. hyp. (c)) iff w has odd number of 0s and even number of 1s

• . . . And so on for the other cases of q = q1 and a = 1, q = q2 and a = 0, q = q2 and
a = 1, q = q3 and a = 0, and finally q = q3 and a = 1.

Proving Correctness of a DFA

Proof Template
Given a DFA M having n states {q0, q1, . . . qn−1} with initial state q0, and final states F , to prove
that L(M) = L, we do the following.

1. Come up with languages L0, L1, . . . Ln−1 such that L0 = L

2. Prove by induction on |w|, δ̂M (qi, w) ∩ F 6= ∅ if and only if w ∈ Li
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