1 Introducing Finite Automata

1.1 Problems and Computation

Decision Problems

Decision Problems

Given input, decide "yes" or "no"

- Examples: Is x an even number? Is x prime? Is there a path from s to t in graph G ?
- i.e., Compute a boolean function of input

General Computational Problem

In contrast, typically a problem requires computing some non-boolean function, or carrying out an interactive/reactive computation in a distributed environment

- Examples: Find the factors of x. Find the balance in account number x.
- In this course, we will study decision problems because aspects of computability are captured by this special class of problems

What Does a Computation Look Like?

- Some code (a.k.a. control): the same for all instances
- The input (a.k.a. problem instance): encoded as a string over a finite alphabet
- As the program starts executing, some memory (a.k.a. state)
- Includes the values of variables (and the "program counter")
- State evolves throughout the computation
- Often, takes more memory for larger problem instances
- But some programs do not need larger state for larger instances!

1.2 Finite Automata: Informal Overview

Finite State Computation

- Finite state: A fixed upper bound on the size of the state, independent of the size of the input
- A sequential program with no dynamic allocation using variables that take boolean values (or values in a finite enumerated data type)
- If t-bit state, at most 2^{t} possible states
- Not enough memory to hold the entire input
- "Streaming input": automaton runs (i.e., changes state) on seeing each bit of input

An Automatic Door

Figure 1: Top view of Door

Figure 2: State diagram of controller

- Input: A stream of events <front>, <rear>, <both>, <neither>...
- Controller has a single bit of state.

Finite Automata

Details

Automaton

A finite automaton has: Finite set of states, with start/initial and accepting/final states; Transitions from one state to another on reading a symbol from the input.

Computation

Start at the initial state; in each step, read the next symbol of the input, take the transition (edge) labeled by that symbol to a new state.

Acceptance/Rejection: If after reading the input w, the machine is in a final state then w is accepted; otherwise w is rejected.

Figure 3: Transition Diagram of automaton

Conventions

- The initial state is shown by drawing an incoming arrow into the state, with no source.
- Final/accept states are indicated by drawing them with a double circle.

Example: Computation

- On input 1001, the computation is

1. Start in state q_{0}. Read 1 and goto q_{1}.
2. Read 0 and goto q_{1}.
3. Read 0 and goto q_{1}.
4. Read 1 and goto q_{0}. Since q_{0} is not a final state 1001 is rejected.

- On input 010, the computation is

1. Start in state q_{0}. Read 0 and goto q_{0}.
2. Read 1 and goto q_{1}.
3. Read 0 and goto q_{1}. Since q_{1} is a final state 010 is accepted.

1.3 Applications

Finite Automata in Practice

- grep
- Thermostats
- Coke Machines
- Elevators
- Train Track Switches
- Security Properties
- Lexical Analyzers for Parsers

2 Formal Definitions

2.1 Alphabets, Strings and Languages

Alphabet

Definition 1. An alphabet is any finite, non-empty set of symbols. We will usually denote it by Σ.
Example 2. Examples of alphabets include $\{0,1\}$ (binary alphabet); $\{a, b, \ldots, z\}$ (English alphabet); the set of all ASCII characters; \{moveforward, moveback, rotate90\}.

Strings

Definition 3. A string or word over alphabet Σ is a (finite) sequence of symbols in Σ. Examples are '0101001', 'string', '〈moveback $\rangle\langle$ rotate 90\rangle '

- ϵ is the empty string.
- The length of string $u($ denoted by $|u|)$ is the number of symbols in u. Example, $|\epsilon|=0$, $|011010|=6$.
- Concatenation: $u v$ is the string that has a copy of u followed by a copy of v. Example, if $u=' c a t '$ and $v=$ ' $n a p$ ' then $u v='{ }^{\prime}$ catnap'. If $v=\epsilon$ the $u v=v u=u$.
- u is a prefix of v if there is a string w such that $v=u w$. Example 'cat' is a prefix of 'catnap'.

Languages

Definition 4. - For alphabet Σ, Σ^{*} is the set of all strings over $\Sigma . \Sigma^{n}$ is the set of all strings of length n.

- A language over Σ is a set $L \subseteq \Sigma^{*}$. For example $L=\{1,01,11,001\}$ is a language over $\{0,1\}$.
- A language L defines a decision problem: Inputs (strings) whose answer is 'yes' are exactly those belonging to L

Set Notation

We will often define languages using the set builder notation. Thus, $L=\left\{w \in \Sigma^{*} \mid p(w)\right\}$ is the collection of all strings w over Σ that satisfy the property p.
Example 5. - $L=\left\{w \in\{0,1\}^{*}| | w \mid\right.$ is even $\}$ is the set of all even length strings over $\{0,1\}$.

- $L=\left\{w \in\{0,1\}^{*} \mid\right.$ there is a u such that $\left.w u=10001\right\}$ is the set of all prefixes of 10001.

2.2 Deterministic Finite Automaton

Defining an Automaton

To describe an automaton, we to need to specify

- What the alphabet is,
- What the states are,
- What the initial state is,
- What states are accepting/final, and
- What the transition from each state and input symbol is.

Thus, the above 5 things are part of the formal definition.

Deterministic Finite Automata

Formal Definition
Definition 6. A deterministic finite automaton (DFA) is $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$, where

- Q is the finite set of states
- Σ is the finite alphabet
- $\delta: Q \times \Sigma \rightarrow Q$ "Next-state" transition function
- $q_{0} \in Q$ initial state
- $F \subseteq Q$ final/accepting states

	0	1
q_{0}	q_{0}	q_{1}
q_{1}	q_{1}	q_{0}

Figure 5: Transition Table representation

Given a state and a symbol, the next state is "determined".

Formal Example of DFA

Example 7.

Figure 4: Transition Diagram of DFA
Formally the automaton is $M=\left(\left\{q_{0}, q_{1}\right\},\{0,1\}, \delta, q_{0},\left\{q_{1}\right\}\right)$ where

$$
\begin{array}{ll}
\delta\left(q_{0}, 0\right)=q_{0} & \delta\left(q_{0}, 1\right)=q_{1} \\
\delta\left(q_{1}, 0\right)=q_{1} & \delta\left(q_{1}, 1\right)=q_{0}
\end{array}
$$

Computation

Definition 8. For a DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$, string $w=w_{1} w_{2} \cdots w_{k}$, where for each $i w_{i} \in \Sigma$, and states $q_{1}, q_{2} \in Q$, we say $q_{1} \xrightarrow{w} q_{2}$ if there is a sequence of states $r_{0}, r_{1}, \ldots r_{k}$ such that

- $r_{0}=q_{1}$,
- for each $i, \delta\left(r_{i}, w_{i+1}\right)=r_{i+1}$, and
- $r_{k}=q_{2}$.

Definition 9. For a DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ and string $w \in \Sigma^{*}$, we say M accepts w iff $q_{0} \xrightarrow{w}{ }_{M} q$ for some $q \in F$.

Useful Notation

Definition 10. For a DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$, let us define a function $\hat{\delta}_{M}: Q \times \Sigma^{*} \rightarrow \mathcal{P}(Q)$ such that $\hat{\delta}_{M}(q, w)=\left\{q^{\prime} \in Q \mid q \xrightarrow{w}_{M} q^{\prime}\right\}$.

We could say M accepts w iff $\delta_{M}\left(q_{0}, w\right) \cap F \neq \emptyset$.
Proposition 11. For a DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$, and any $q \in Q$, and $w \in \Sigma^{*},\left|\hat{\delta}_{M}(q, w)\right|=1$.

Acceptance/Recognition

Definition 12. The language accepted or recognized by a DFA M over alphabet Σ is $\mathbf{L}(M)=\{w \in$ $\Sigma^{*} \mid M$ accepts $\left.w\right\}$. A language L is said to be accepted/recognized by M if $L=\mathbf{L}(M)$.

2.3 Examples

Example I

Figure 6: Automaton accepts all strings of 0 s and 1 s

Example II

Figure 7: Automaton accepts strings ending in 1

Example III

Figure 8: Automaton accepts strings having an odd number of 1 s

Example IV

Figure 9: Automaton accepts strings having an odd number of 1 s and odd number of 0 s

