
1 Introducing Finite Automata

1.1 Problems and Computation

Decision Problems

Decision Problems
Given input, decide “yes” or “no”

• Examples: Is x an even number? Is x prime? Is there a path from s to t in graph G?

• i.e., Compute a boolean function of input

General Computational Problem
In contrast, typically a problem requires computing some non-boolean function, or carrying out an
interactive/reactive computation in a distributed environment

• Examples: Find the factors of x. Find the balance in account number x.

• In this course, we will study decision problems because aspects of computability are captured
by this special class of problems

What Does a Computation Look Like?

• Some code (a.k.a. control): the same for all instances

• The input (a.k.a. problem instance): encoded as a string over a finite alphabet

• As the program starts executing, some memory (a.k.a. state)

– Includes the values of variables (and the “program counter”)

– State evolves throughout the computation

– Often, takes more memory for larger problem instances

• But some programs do not need larger state for larger instances!

1.2 Finite Automata: Informal Overview

Finite State Computation

• Finite state: A fixed upper bound on the size of the state, independent of the size of the input

– A sequential program with no dynamic allocation using variables that take boolean
values (or values in a finite enumerated data type)

1

– If t-bit state, at most 2t possible states

• Not enough memory to hold the entire input

– “Streaming input”: automaton runs (i.e., changes state) on seeing each bit of input

An Automatic Door

Front
pad

Rear
pad

door

Figure 1: Top view of Door

closed open

front

neither

rear
both

neither

front
rear
both

Figure 2: State diagram of controller

• Input: A stream of events <front>, <rear>, <both>, <neither> . . .

• Controller has a single bit of state.

Finite Automata
Details

Automaton
A finite automaton has: Finite set of states, with start/initial and accepting/final states; Transitions
from one state to another on reading a symbol from the input.

Computation
Start at the initial state; in each step, read the next symbol of the input, take the transition (edge)
labeled by that symbol to a new state.

Acceptance/Rejection: If after reading the input w, the machine is in a final state then w is
accepted; otherwise w is rejected.

2

q0 q1

0 0

1

1

Figure 3: Transition Diagram of automaton

Conventions

• The initial state is shown by drawing an incoming arrow into the state, with no source.

• Final/accept states are indicated by drawing them with a double circle.

Example: Computation

• On input 1001, the computation is

1. Start in state q0. Read 1 and goto q1.

2. Read 0 and goto q1.

3. Read 0 and goto q1.

4. Read 1 and goto q0. Since q0 is not a final state 1001 is rejected.

• On input 010, the computation is

1. Start in state q0. Read 0 and goto q0.

2. Read 1 and goto q1.

3. Read 0 and goto q1. Since q1 is a final state 010 is accepted.

q0 q1

0 0

1

1

3

1.3 Applications

Finite Automata in Practice

• grep

• Thermostats

• Coke Machines

• Elevators

• Train Track Switches

• Security Properties

• Lexical Analyzers for Parsers

2 Formal Definitions

2.1 Alphabets, Strings and Languages

Alphabet

Definition 1. An alphabet is any finite, non-empty set of symbols. We will usually denote it by Σ.

Example 2. Examples of alphabets include {0, 1} (binary alphabet); {a, b, . . . , z} (English alpha-
bet); the set of all ASCII characters; {moveforward, moveback, rotate90}.

Strings

Definition 3. A string or word over alphabet Σ is a (finite) sequence of symbols in Σ. Examples
are ‘0101001’, ‘string’, ‘〈moveback〉〈rotate90〉’

• ε is the empty string.

• The length of string u (denoted by |u|) is the number of symbols in u. Example, |ε| = 0,
|011010| = 6.

• Concatenation: uv is the string that has a copy of u followed by a copy of v. Example, if
u = ‘cat′ and v = ‘nap′ then uv = ‘catnap′. If v = ε the uv = vu = u.

• u is a prefix of v if there is a string w such that v = uw. Example ‘cat′ is a prefix of ‘catnap′.

Languages

4

Definition 4. • For alphabet Σ, Σ∗ is the set of all strings over Σ. Σn is the set of all strings
of length n.

• A language over Σ is a set L ⊆ Σ∗. For example L = {1, 01, 11, 001} is a language over {0, 1}.

– A language L defines a decision problem: Inputs (strings) whose answer is ‘yes’ are
exactly those belonging to L

Set Notation

We will often define languages using the set builder notation. Thus, L = {w ∈ Σ∗ | p(w)} is the
collection of all strings w over Σ that satisfy the property p.

Example 5. • L = {w ∈ {0, 1}∗ | |w| is even} is the set of all even length strings over {0, 1}.

• L = {w ∈ {0, 1}∗ | there is a u such that wu = 10001} is the set of all prefixes of 10001.

2.2 Deterministic Finite Automaton

Defining an Automaton

To describe an automaton, we to need to specify

• What the alphabet is,

• What the states are,

• What the initial state is,

• What states are accepting/final, and

• What the transition from each state and input symbol is.

Thus, the above 5 things are part of the formal definition.

Deterministic Finite Automata
Formal Definition

Definition 6. A deterministic finite automaton (DFA) is M = (Q,Σ, δ, q0, F), where

• Q is the finite set of states

• Σ is the finite alphabet

• δ : Q× Σ→ Q “Next-state” transition function

• q0 ∈ Q initial state

• F ⊆ Q final/accepting states

5

0 1

q0 q0 q1
q1 q1 q0

Figure 5: Transition Table representation

Given a state and a symbol, the next state is “determined”.

Formal Example of DFA

Example 7.

q0 q1

0 0

1

1

Figure 4: Transition Diagram of DFA

Formally the automaton is M = ({q0, q1}, {0, 1}, δ, q0, {q1}) where

δ(q0, 0) = q0 δ(q0, 1) = q1
δ(q1, 0) = q1 δ(q1, 1) = q0

Computation

Definition 8. For a DFA M = (Q,Σ, δ, q0, F), string w = w1w2 · · ·wk, where for each i wi ∈ Σ,
and states q1, q2 ∈ Q, we say q1

w−→M q2 if there is a sequence of states r0, r1, . . . rk such that

• r0 = q1,

• for each i, δ(ri, wi+1) = ri+1, and

• rk = q2.

Definition 9. For a DFA M = (Q,Σ, δ, q0, F) and string w ∈ Σ∗, we say M accepts w iff q0
w−→M q

for some q ∈ F .

Useful Notation

Definition 10. For a DFA M = (Q,Σ, δ, q0, F), let us define a function δ̂M : Q×Σ∗ → P(Q) such
that δ̂M (q, w) = {q′ ∈ Q | q w−→M q′}.

We could say M accepts w iff δ̂M (q0, w) ∩ F 6= ∅.

Proposition 11. For a DFA M = (Q,Σ, δ, q0, F), and any q ∈ Q, and w ∈ Σ∗, |δ̂M (q, w)| = 1.

6

Acceptance/Recognition

Definition 12. The language accepted or recognized by a DFA M over alphabet Σ is L(M) = {w ∈
Σ∗ |M accepts w}. A language L is said to be accepted/recognized by M if L = L(M).

2.3 Examples

Example I

q0

0, 1

Figure 6: Automaton accepts all strings of 0s and 1s

Example II

q0 q1

0 1

1

0

Figure 7: Automaton accepts strings ending in 1

Example III

q0 q1

0 0

1

1

Figure 8: Automaton accepts strings having an odd number of 1s

Example IV

7

q0 q1

q2q3

1

1

1

1

0 0 0 0

Figure 9: Automaton accepts strings having an odd number of 1s and odd number of 0s

8

	Introducing Finite Automata
	Problems and Computation
	Finite Automata: Informal Overview
	Applications

	Formal Definitions
	Alphabets, Strings and Languages
	Deterministic Finite Automaton
	Examples

