Midterm 2
 CS 373: Theory of Computation

Date: Thursday, November 4, 2010.

Instructions:

- This is a closed book exam. No notes, cheat sheets, textbook, or printed material allowed.
- You have 120 minutes to solve this exam.
- This exam has 5 problems each worth 10 points. However, not all problems are of equal difficulty.
- Please write your name on the top of every page in the space provided.
- If your solution does not fit in the space provided, and continues onto one of the back sheets, please indicate clearly where we should look for the solution.
- Unless otherwise stated, recall that "prove that", "show that" for a problem means you need to formally prove what you are claiming.
- Answering "I don't know" for a problem does not receive any points.
- You may use, without proof, any result that you were asked to prove in the homework or was proved in the lecture. If you use such a result, please explicitly state the result you are using (like " 'Reverse of a regular language is regular' was proved in a homework", rather than saying "this was shown in a homework").

Name	SOLUTIONS
Netid	solutions

Problem	Maximum Points	Points Earned	Grader
1	10		
2	10		
3	10		
4	10		
5	10		
Total	50		

Problem 1. [Category: Comprehension] True/False. Decide for each statement whether it is true or false. Circle \mathbf{T} if the statement is necessarily true; circle \mathbf{F} if it it is not necessarily true. Each correct answer is worth 1 point.
(a) Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be the minimal DFA recognizing the language $L(M)$. Suppose M^{\prime} is same as M except the initial state is changed to $q \neq q_{0}$, i.e., $M^{\prime}=(Q, \Sigma, \delta, q, F)$. Assuming all states in Q are reachable from q, M^{\prime} is the minimal DFA recognizing $L\left(M^{\prime}\right)$.
T $\quad \mathbf{F}$
True. Observe the if two states are distinguishable in M they are also distinguishable in M^{\prime}.
(b) Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be the minimal DFA recognizing the language $L(M)$. Since every pair of states of M is distinguishable, if w is accepted from state q then w is not accepted from state $q^{\prime}(\neq q)$.
T $\quad \mathbf{F}$
False. Distinguishability only requires the states to behave differently on some string, and not all.
(c) If L is regular then $\operatorname{suffix}(L, x)$ is always regular, no matter what x is. (For a definition of $\operatorname{suffix}(L, x)$ see problem 2.)
T $\quad \mathbf{F}$
True. Suppose DFA M recognizes L, then $\operatorname{suffix}(L, x)$ is the set of strings accepted by M from the state q reached on input x. Thus, $\operatorname{suffix}(L, x)$ is recognized by the DFA M^{\prime} which is the same as M, except that it has initial state q^{\prime}.
(d) For a decidable language L, L^{R} may or may not be decidable. (L^{R} denotes the reverse of language L.) $\mathbf{T} \quad \mathbf{F}$
False. On input x, the algorithm for L^{R}, will reverse x, and then run the algorithm for L.
(e) If $L \subseteq\{0\}^{*}$ then L is decidable.
$\mathbf{T} \quad \mathbf{F}$
False. TMs can be encoded in unary; just take the binary string, and translate that to a unary string. So all the languages that we know to be undecidable (like L_{d}) have a unary encoding that will also be undecidable.
(f) If $L \leq_{m}\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ then L is decidable.
$\mathbf{T} \quad \mathbf{F}$
True. Since $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is decidable, the observation follows from properties of reductions.
(g) If L is not recursively enumerable then \bar{L} must be recursively enumerable.
$\mathbf{T} \quad \mathbf{F}$
False. There are languages like REGULAR which are not r.e., and their complement is also not r.e.
(h) $L_{k}=\{M \mid M$ halts after at most k steps on $\epsilon\}$ is not decidable because of Rice's theorem.

T $\quad \mathbf{F}$
False. First L_{k} is not a property of languages and so Rice's theorem does not apply to it. Second L_{k} is decidable - simply run input M on ϵ for k steps, and accept or reject based on whether M halts.
(i) If L is recursively enumerable and $L^{\prime} \subseteq L$ then L^{\prime} is recursively enumerable because the enumerator for L also enumerates L^{\prime}.
T $\quad \mathbf{F}$
False. Take $L=\{0,1\}^{*}$ (which is decidable and r.e.) and $L^{\prime}=L_{d}$ which is not r.e. The enumerator for L outputs all the strings in L^{\prime} but it also outputs additional strings that may not be in L^{\prime}, and so it is not an enumerator for L^{\prime}.
(j) If $A \leq_{m} B$ then $\bar{A} \leq_{m} \bar{B}$.
$\mathbf{T} \quad \mathbf{F}$
True. See solutions to homework 8.

Problem 2. [Category: Comprehension+Design] Consider the language $L=L\left(\epsilon \cup(1 \cup 0) 1^{*}\right)$ and a DFA M that accepts L :

(a) Recall that for a DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$, $\operatorname{suffix}(M, q)=\left\{w \in \Sigma^{*} \mid q{ }^{w}{ }_{M} q^{\prime}\right.$ and $\left.q^{\prime} \in F\right\}$. In other words, it is the collection of all words accepted if q were the initial state.
For each state q of M describe the language $\operatorname{suffix}(M, q)$, using either regular expressions or formal set notation.
[2.5 Points]
(b) Recall that for a language $L \subseteq \Sigma^{*}$, and a string $x \in \Sigma^{*}$, suffix language of L with respect to x, is defined as

$$
\operatorname{suffix}(L, x)=\left\{y \in \Sigma^{*} \mid x y \in L\right\}
$$

In other words, suffix (L, x) is the collection of strings y which when prefixed by x, result in a string in L.
For each of the following values of x, describe $\operatorname{suffix}(L, x)$. (Hint: You may use the DFA M and the previous problem to simplify your calculations.)
(a) $x=\epsilon$
(b) $x=0$
(c) $x=1$
(d) $x=00$
(e) $x=01$
(f) $x=10$
(g) $x=11$
(c) Give a minimal DFA for L.
[4 Points]

Solution:

(a)

$$
\begin{array}{ll}
\operatorname{suffix}\left(M, q_{0}\right)=L & \operatorname{suffix}\left(M, q_{1}\right)=L\left(1^{*}\right) \\
\operatorname{suffix}\left(M, q_{2}\right)=L\left(1^{*}\right) & \operatorname{suffix}\left(M, q_{3}\right)=L\left(1^{*}\right) \\
\operatorname{suffix}\left(M, q_{4}\right)=\emptyset &
\end{array}
$$

(b) (a) $x=\epsilon$: $\operatorname{suffix}(L, x)=L$
(b) $x=0: \operatorname{suffix}(L, x)=1^{*}$
(c) $x=1: \operatorname{suffix}(L, x)=1^{*}$
(d) $x=00: \operatorname{suffix}(L, x)=\emptyset$
(e) $x=01: \operatorname{suffix}(L, x)=1^{*}$
(f) $x=10: \operatorname{suffix}(L, x)=\emptyset$
(g) $x=11: \operatorname{suffix}(L, x)=1^{*}$
(c)

Problem 3. [Category: Comprehension] Consider the following Turing machine M on input alphabet $\{0,1\}$. All transitions not shown in the diagram below are assumed to go to the reject state $q_{\text {rej }}$.

(a) Give the formal definition of M as a tuple.
[3 Points]
(b) Describe the computation of M on the input 0111 formally, as a sequence of instantaneous descriptions/configurations.
Points]
(c) Is there any input on which M does not halt? If so, give an example string.
(d) What is the language recognized by M ?

Solution:

(a) $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {acc }}, q_{\mathrm{rej}}\right)$ where $Q=\left\{q_{0}, q_{1}, q_{3}, q_{\mathrm{acc}}, q_{\mathrm{rej}}\right\}, \Sigma=\{0,1\}, \Gamma=\{0,1, \sqcup\}$, and δ is given as follows.

$$
\begin{array}{lll}
\delta\left(q_{0}, 0\right)=\left(q_{1}, 1, \mathrm{R}\right) & \delta\left(q_{1}, 1\right)=\left(q_{3}, 0, \mathrm{~L}\right) & \delta\left(q_{1}, \sqcup\right)=\left(q_{\mathrm{acc}}, \sqcup, \mathrm{R}\right) \\
\delta\left(q_{3}, 1\right)=\left(q_{0}, 0, \mathrm{R}\right) & \delta(q, a)=\left(q_{\mathrm{rej}}, \sqcup, \mathrm{R}\right) \text { in all other cases } &
\end{array}
$$

(b) The computation is as follows:

$$
\begin{aligned}
q_{0} 0111 & \vdash 1 q_{1} 111 \vdash q_{3} 1011 \vdash 0 q_{0} 011 \vdash 01 q_{1} 11 \vdash 0 q_{3} 101 \vdash 00 q_{0} 01 \vdash 001 q_{1} 1 \vdash 00 q_{3} 10 \vdash 000 q_{0} 0 \\
& \vdash 0001 q_{1} \sqcup \vdash 0001 \sqcup q_{\mathrm{acc}} \sqcup
\end{aligned}
$$

(c) The machine halts on all inputs.
(d) The language recognized by this machine is given by the regular expression 01^{*}.

Problem 4. [Category: Comprehension + Proof]
(a) Suppose A and B are recursively enumerable languages such that $A \cup B$ and $A \cap B$ are both decidable. Prove that A is decidable.
[5 Points]
(b) Suppose A is recursively enumerable and $A \leq_{m} \bar{A}$. Prove that A is decidable.

Solution:

(a) Let M_{A} and M_{B} be TMs recognizing A and B, respectively. Let $M_{A \cup B}$ and $M_{A \cap B}$ be decision procedures for $A \cup B$ and $A \cap B$, respectively. An algorithm for A is as follows.

```
On input }
Run }\mp@subsup{M}{A\cupB}{}\mathrm{ on }
If }\mp@subsup{M}{A\cupB}{}\mathrm{ rejects then reject (and halt)
else /***}x\mathrm{ is in }A\cup\mp@subsup{B}{}{***/
    Run }\mp@subsup{M}{A\capB}{}\mathrm{ on }
    If M}\mp@subsup{M}{A\capB}{}\mathrm{ accepts then accept (and halt)
    else /*** }x\in(A\cupB)\(A\capB)***
        Run }\mp@subsup{M}{A}{}\mathrm{ and }\mp@subsup{M}{B}{}\mathrm{ in parallel (using dovetailing) on }
        If }\mp@subsup{M}{A}{}\mathrm{ accepts then accept (and halt)
        else if M}\mp@subsup{M}{B}{}\mathrm{ accepts then reject (and halt)
```

The main observation is that if on $x, M_{A \cup B}$ accepts and $M_{A \cap B}$ rejects, then x belongs to exactly one out of A and B. Thus, exactly one of the simulations of M_{A} and M_{B} will accept, and whichever one terminates first, we know whether x belongs to A or not.
(b) Observe that in homework 8 , we showed that if $A \leq_{m} B$ then $\bar{A} \leq_{m} \bar{B}$. Thus, if $A \leq_{m} \bar{A}$ then $\bar{A} \leq_{m} \overline{\bar{A}}=A$. Therefore, since A is r.e., from properties of reductions, it follows that \bar{A} is r.e. Finally, since A and \bar{A} are r.e., from a theorem proved in class, we can conclude that A is decidable.

Problem 5. [Category: Proof] Let $L=\{M \mid M$ is a TM and $L(M)$ has at least 11253 strings $\}$. Prove the following facts.
(a) L is undecidable.
(b) L is recursively enumerable.
(c) \bar{L} is not recursively enumerable.

Solution:

(a) L is a non-trivial property of languages, and so by Rice's theorem L is undecidable.
(b) L is recursively enumerable because the following nondeterminstic TM recognizes L

On input M
Guess 11253 different strings
Run M on all the strings guessed
If M (halts and) accepts n each of the guesed strings then accept else reject
Since nondeterminstic TMs are equivalent to deterministic TMs, we know that L is recursively enumerable.
(c) Since L is undecidable (part 1), and recursively enumerable (part 2), \bar{L} must be not recursively enumerable.

