
Midterm 2
CS 373: Theory of Computation

Date: Thursday, November 4, 2010.

Instructions:

• This is a closed book exam. No notes, cheat sheets, textbook, or printed material allowed.

• You have 120 minutes to solve this exam.

• This exam has 5 problems each worth 10 points. However, not all problems are of equal difficulty.

• Please write your name on the top of every page in the space provided.

• If your solution does not fit in the space provided, and continues onto one of the back sheets, please
indicate clearly where we should look for the solution.

• Unless otherwise stated, recall that “prove that”, “show that” for a problem means you need to formally
prove what you are claiming.

• Answering “I don’t know” for a problem does not receive any points.

• You may use, without proof, any result that you were asked to prove in the homework or was proved
in the lecture. If you use such a result, please explicitly state the result you are using (like “ ‘Reverse
of a regular language is regular’ was proved in a homework”, rather than saying “this was shown in a
homework”).

Name SOLUTIONS

Netid solutions

Problem Maximum Points Points Earned Grader

1 10

2 10

3 10

4 10

5 10

Total 50

1
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Problem 1. [Category: Comprehension] True/False. Decide for each statement whether it is true or false.
Circle T if the statement is necessarily true; circle F if it it is not necessarily true. Each correct answer is
worth 1 point.

(a) Let M = (Q,Σ, δ, q0, F ) be the minimal DFA recognizing the language L(M). Suppose M ′ is same as
M except the initial state is changed to q 6= q0, i.e., M ′ = (Q,Σ, δ, q, F ). Assuming all states in Q are
reachable from q, M ′ is the minimal DFA recognizing L(M ′).
T F
True. Observe the if two states are distinguishable in M they are also distinguishable in M ′.

(b) Let M = (Q,Σ, δ, q0, F ) be the minimal DFA recognizing the language L(M). Since every pair of states
of M is distinguishable, if w is accepted from state q then w is not accepted from state q′ (6= q).
T F
False. Distinguishability only requires the states to behave differently on some string, and not all.

(c) If L is regular then suffix(L, x) is always regular, no matter what x is. (For a definition of suffix(L, x)
see problem 2.)
T F
True. Suppose DFA M recognizes L, then suffix(L, x) is the set of strings accepted by M from the
state q reached on input x. Thus, suffix(L, x) is recognized by the DFA M ′ which is the same as M ,
except that it has initial state q′.

(d) For a decidable language L, LR may or may not be decidable. (LR denotes the reverse of language L.)
T F
False. On input x, the algorithm for LR, will reverse x, and then run the algorithm for L.

(e) If L ⊆ {0}∗ then L is decidable.
T F
False. TMs can be encoded in unary; just take the binary string, and translate that to a unary string.
So all the languages that we know to be undecidable (like Ld) have a unary encoding that will also be
undecidable.

(f) If L ≤m {0n1n | n ≥ 0} then L is decidable.
T F
True. Since {0n1n | n ≥ 0} is decidable, the observation follows from properties of reductions.

(g) If L is not recursively enumerable then L must be recursively enumerable.
T F
False. There are languages like REGULAR which are not r.e., and their complement is also not r.e.

(h) Lk = {M |M halts after at most k steps on ε} is not decidable because of Rice’s theorem.
T F
False. First Lk is not a property of languages and so Rice’s theorem does not apply to it. Second Lk

is decidable — simply run input M on ε for k steps, and accept or reject based on whether M halts.

(i) If L is recursively enumerable and L′ ⊆ L then L′ is recursively enumerable because the enumerator
for L also enumerates L′.
T F
False. Take L = {0, 1}∗ (which is decidable and r.e.) and L′ = Ld which is not r.e. The enumerator
for L outputs all the strings in L′ but it also outputs additional strings that may not be in L′, and so
it is not an enumerator for L′.
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(j) If A ≤m B then A ≤m B.
T F
True. See solutions to homework 8.
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Problem 2. [Category: Comprehension+Design] Consider the language L = L (ε ∪ (1 ∪ 0)1∗) and a DFA
M that accepts L:

q0

q1

q2

q3 q4

1

0

1

1

1

0

0

0

0, 1

(a) Recall that for a DFA M = (Q,Σ, δ, q0, F ), suffix(M, q) = {w ∈ Σ∗ | q w−→M q′ and q′ ∈ F}. In other
words, it is the collection of all words accepted if q were the initial state.

For each state q of M describe the language suffix(M, q), using either regular expressions or formal set
notation. [2.5 Points]

(b) Recall that for a language L ⊆ Σ∗, and a string x ∈ Σ∗, suffix language of L with respect to x, is
defined as

suffix(L, x) = {y ∈ Σ∗ | xy ∈ L}

In other words, suffix(L, x) is the collection of strings y which when prefixed by x, result in a string in
L.

For each of the following values of x, describe suffix(L, x). (Hint: You may use the DFA M and the
previous problem to simplify your calculations.) [3.5 Points]

(a) x = ε

(b) x = 0

(c) x = 1

(d) x = 00

(e) x = 01

(f) x = 10

(g) x = 11

(c) Give a minimal DFA for L. [4 Points]
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Solution:

(a)
suffix(M, q0) = L suffix(M, q1) = L(1∗)
suffix(M, q2) = L(1∗) suffix(M, q3) = L(1∗)
suffix(M, q4) = ∅

(b) (a) x = ε: suffix(L, x) = L

(b) x = 0: suffix(L, x) = 1∗

(c) x = 1: suffix(L, x) = 1∗

(d) x = 00: suffix(L, x) = ∅
(e) x = 01: suffix(L, x) = 1∗

(f) x = 10: suffix(L, x) = ∅
(g) x = 11: suffix(L, x) = 1∗

(c)

q0 q123 q4

0

1

1

0

0, 1
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Problem 3. [Category: Comprehension] Consider the following Turing machine M on input alphabet {0, 1}.
All transitions not shown in the diagram below are assumed to go to the reject state qrej.

q0

q1

q3

qacc

0→ 1,R

t → t,R

1→ 0, L

1→ 0,R

(a) Give the formal definition of M as a tuple. [3 Points]

(b) Describe the computation of M on the input 0111 formally, as a sequence of instantaneous descrip-
tions/configurations. [5
Points]

(c) Is there any input on which M does not halt? If so, give an example string. [1 Point]

(d) What is the language recognized by M? [1 Point]

Solution:

(a) M = (Q,Σ,Γ, δ, q0, qacc, qrej) where Q = {q0, q1, q3, qacc, qrej}, Σ = {0, 1}, Γ = {0, 1,t}, and δ is given
as follows.

δ(q0, 0) = (q1, 1,R) δ(q1, 1) = (q3, 0, L) δ(q1,t) = (qacc,t,R)
δ(q3, 1) = (q0, 0,R) δ(q, a) = (qrej,t,R) in all other cases

(b) The computation is as follows:

q00111 ` 1q1111 ` q31011 ` 0q0011 ` 01q111 ` 0q3101 ` 00q001 ` 001q11 ` 00q310 ` 000q00
` 0001q1t ` 0001 t qacct

(c) The machine halts on all inputs.

(d) The language recognized by this machine is given by the regular expression 01∗.
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Problem 4. [Category: Comprehension+Proof]

(a) Suppose A and B are recursively enumerable languages such that A∪B and A∩B are both decidable.
Prove that A is decidable. [5 Points]

(b) Suppose A is recursively enumerable and A ≤m A. Prove that A is decidable. [5 Points]

Solution:

(a) Let MA and MB be TMs recognizing A and B, respectively. Let MA∪B and MA∩B be decision
procedures for A ∪B and A ∩B, respectively. An algorithm for A is as follows.

On input x
Run MA∪B on x
If MA∪B rejects then reject (and halt)
else /*** x is in A ∪B ***/

Run MA∩B on x
If MA∩B accepts then accept (and halt)
else /*** x ∈ (A ∪B) \ (A ∩B) ***/

Run MA and MB in parallel (using dovetailing) on x
If MA accepts then accept (and halt)
else if MB accepts then reject (and halt)

The main observation is that if on x, MA∪B accepts and MA∩B rejects, then x belongs to exactly one
out of A and B. Thus, exactly one of the simulations of MA and MB will accept, and whichever one
terminates first, we know whether x belongs to A or not.

(b) Observe that in homework 8, we showed that if A ≤m B then A ≤m B. Thus, if A ≤m A then

A ≤m A = A. Therefore, since A is r.e., from properties of reductions, it follows that A is r.e. Finally,
since A and A are r.e., from a theorem proved in class, we can conclude that A is decidable.
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Problem 5. [Category: Proof] Let L = {M |M is a TM and L(M) has at least 11253 strings}. Prove the
following facts.

(a) L is undecidable. [2 Points]

(b) L is recursively enumerable. [4 Points]

(c) L is not recursively enumerable. [4 Points]

Solution:

(a) L is a non-trivial property of languages, and so by Rice’s theorem L is undecidable.

(b) L is recursively enumerable because the following nondeterminstic TM recognizes L

On input M
Guess 11253 different strings
Run M on all the strings guessed
If M (halts and) accepts n each of the guesed strings then accept else reject

Since nondeterminstic TMs are equivalent to deterministic TMs, we know that L is recursively enu-
merable.

(c) Since L is undecidable (part 1), and recursively enumerable (part 2), L must be not recursively enu-
merable.


