CS 373: Theory of Computation

Gul Agha Mahesh Viswanathan

Fall 2010

1 Regular operations

Union of CFLs

Let L; be language recognized by G1 = (V1,%1, R1,S51) and Lo the language recognized by
Go = (Va, %2, Ro, So)

Is L1 U Ly a context free language? Yes.

Just add the rule S — 51|95,

But make sure that V3 NV, = () (by renaming some variables).

Closure of CFLs under Union
G = (V,%X,R,S) such that L(G) = L(G1) U L(G3):

o V=V, UV,U{S} (the three sets are disjoint)
e X =>1UXo

° R:RIURQU{S—>31|SQ}

Concatenation, Kleene Closure

Proposition 1. CFLs are closed under concatenation and Kleene closure

Proof. Let L; be language generated by G; = (V1, %1, R1,S51) and Ly the language generated by
Ga = (Va,32, Ry, S2)

e Concatenation: LjLo generated by a grammar with an additional rule S — 5155

e Kleene Closure: L] generated by a grammar with an additional rule S — S1.5]e

As before, ensure that V1 NV5 = (. S is a new start symbol.
(Exercise: Complete the Proof!) O

Intersection

Let Ly and Lo be context free languages. L1 N Lo is not necessarily context free!
Proposition 2. CFLs are not closed under intersection
Proof. o Ly ={a'b'c¢/ |i,j >0} is a CFL
— Generated by a grammar with rules S — XY; X — aXble; Y — cY|e.
o Ly={a'¥/¢’ |i,j >0} is a CFL.
— Generated by a grammar with rules S — XY; X — aX|e; Y — bY cle.

e But L; N Ly = {a"b"c™ | n > 0} is not a CFL. O

Intersection with Regular Languages

Proposition 3. If L is a CFL and R is a regular language then LN R is a CFL.

Proof. Let P be the PDA that accepts L, and let M be the DFA that accepts R. A new PDA
P’ will simulate P and M simultaneously on the same input and accept if both accept. Then P’
accepts LN R.

e The stack of P’ is the stack of P

e The state of P’ at any time is the pair (state of P, state of M)

e These determine the transition function of P’

e The final states of P’ are those in which both the state of P and state of M are accepting.

More formally, let M = (Q1, %, 01, ¢q1, F1) be a DFA such that L(M) = R, and P = (Q2, %, T, 2, g2, F)
be a PDA such that L(P) = L. Then consider P’ = (Q,%,T, 0, qo, F') such that

* Q=Q1xQ

* g0 = (q1,42)

o FF=F x Iy

o ((p.a),z,a) = {((0,q),0) [P = 01(p, %) and (¢,) € a2(q, x,a)}-

One can show by induction on the number of computation steps, that for any w € X*
(q0,€) —=pr ((p,q), 0) iff gt —nr p and (g2,€) —p (q,0)

The proof of this statement is left as an exercise. Now as a consequence, we have w € L(P’)
iff (go,€) —=ps {(p,q),o) such that (p,q) € F (by definition of PDA acceptance) iff (gy,€) —p
((p,q), o) such that p € Fy and q € Fy (by definition of F) iff ¢ —— s p and (g2, €) —p (g,) and
p € Fy and ¢ € Fy (by the statement to be proved as exercise) iff w € L(M) and w € L(P) (by
definition of DFA acceptance and PDA acceptance). O

<

Why does this construction not work for intersection of two CFLs?

Complementation

Let L be a context free language. Is L context free? No!

Proof 1. Suppose CFLs were closed under complementation. Then for any two CFLs L1, Lo, we
have

e L; and Ly are CFL. Then, since CFLs closed under union, L; U Ly is CFL. Then, again by
hypothesis, L1 U Lo is CFL.

eie,LiNLyisa CFL

i.e., CFLs are closed under intersection. Contradiction!]
Proof 2. L = {z | x not of the form ww} is a CFL.
e [generated by a grammar with rules X — alb, A — a|XAX, B — b|XBX,S — A|B|AB|BA

But L = {ww |w € {a,b}*} is not a CFL! (Why?) O

Set Difference

Proposition 4. If Ly is a CFL and Ly is a CFL then Ly \ Ly is not necessarily a CFL

Proof. Because CFLs not closed under complementation, and complementation is a special case of
set difference. (How?) O

Proposition 5. If L is a CFL and R is a regular language then L\ R is a CFL
Proof. L\R=LNR O

2 Homomorphism and Inverse Homomorphism

Homomorphism

Proposition 6. Context free languages are closed under homomorphisms.

Proof. Let G = (V,X, R, S) be the grammar generating L, and let h : ¥* — I'* be a homomorphism.
A grammar G' = (V',T', R, S") for generating h(L):

e Include all variables from G (i.e., V' D V), and let S’ = S
e Treat terminals in G as variables. i.e., for every a € ¥

— Add a new variable X, to V’
— In each rule of G, if a appears in the RHS, replace it by X,

e For each X, add the rule X, — h(a)

G’ generates h(L). (Exercise!) O

Homomorphism

Ezample 7. Let G have the rules S — 050[151]e.
Consider the homorphism h : {0,1}* — {a,b}* given by h(0) = aba and h(1) = bb.
Rules of G’ s.t. L(G') = h(L(Q)):
S = XoSXo|X15X:|e
Xo — aba
Xy — bb

Inverse Homomorphisms

Recall: For a homomorphism h, h™'(L) = {w | h(w) € L}
Proposition 8. If L is a CFL then h™*(L) is a CFL
Proof Idea

For regular language L: the DFA for h~!(L) on reading a symbol a, simulated the DFA for L on
h(a). Can we do the same with PDAs?

e Key idea: store h(a) in a “buffer” and process symbols from h(a) one at a time (according
to the transition function of the original PDA), and the next input symbol is processed only
after the “buffer” has been emptied.

e Where to store this “buffer”? In the state of the new PDA!

Proof. Let P = (Q,A,T,0,qo, F) be a PDA such that L(P) = L. Let h : ¥* — A* be a homomor-
phism such that n = maxgex |h(a)|, i.e., every symbol of ¥ is mapped to a string under h of length
at most n. Consider the PDA P/ = (Q', X, T, ¢, q)), F') where

e Q' =Q x AS" where AS" is the collection of all strings of length at most n over A.
* ¢) = (q¢)

o F/ =F x {e}

e ¢’ is given by

{((q,h(x)), €)} ifv=a=e
{((pvu)vb) ’ (p7 b) € 6(Q7 Y, a)} ifv=yu, r=¢ and y € A

6/((Q7 U),JJ, CL) = {

and ¢'(-) = () in all other cases.

We can show by induction that for every w € ¥*

(a0, €) —=p ((g,v),0) iff (q0,€) =P {q.0)
where h(w) = w'v. Again this induction proof is left as an exercise. Now, w € L(P) iff (¢}, ¢) —pr

((g,€),0) where ¢ € F (by definition of PDA acceptance and F”) iff (qo, €) h(—wgp (q,0) (by exercise)
iff h(w) € L(P) (by definition of PDA acceptance). Thus, L(P') = h~Y(L(P)) = h=(L). O

	Regular operations
	Homomorphism and Inverse Homomorphism

