CS 373: Theory of Computation

Gul Agha Mahesh Viswanathan

Fall 2010

1 Regular operations

Union of CFLs

Let L_{1} be language recognized by $G_{1}=\left(V_{1}, \Sigma_{1}, R_{1}, S_{1}\right)$ and L_{2} the language recognized by $G_{2}=\left(V_{2}, \Sigma_{2}, R_{2}, S_{2}\right)$

Is $L_{1} \cup L_{2}$ a context free language? Yes.
Just add the rule $S \rightarrow S_{1} \mid S_{2}$
But make sure that $V_{1} \cap V_{2}=\emptyset$ (by renaming some variables).

Closure of CFLs under Union

$G=(V, \Sigma, R, S)$ such that $L(G)=L\left(G_{1}\right) \cup L\left(G_{2}\right)$:

- $V=V_{1} \cup V_{2} \cup\{S\}$ (the three sets are disjoint)
- $\Sigma=\Sigma_{1} \cup \Sigma_{2}$
- $R=R_{1} \cup R_{2} \cup\left\{S \rightarrow S_{1} \mid S_{2}\right\}$

Concatenation, Kleene Closure

Proposition 1. CFLs are closed under concatenation and Kleene closure
Proof. Let L_{1} be language generated by $G_{1}=\left(V_{1}, \Sigma_{1}, R_{1}, S_{1}\right)$ and L_{2} the language generated by $G_{2}=\left(V_{2}, \Sigma_{2}, R_{2}, S_{2}\right)$

- Concatenation: $L_{1} L_{2}$ generated by a grammar with an additional rule $S \rightarrow S_{1} S_{2}$
- Kleene Closure: L_{1}^{*} generated by a grammar with an additional rule $S \rightarrow S_{1} S \mid \epsilon$

As before, ensure that $V_{1} \cap V_{2}=\emptyset . S$ is a new start symbol.
(Exercise: Complete the Proof!)

Intersection

Let L_{1} and L_{2} be context free languages. $L_{1} \cap L_{2}$ is not necessarily context free!
Proposition 2. CFLs are not closed under intersection
Proof. - $L_{1}=\left\{a^{i} b^{i} c^{j} \mid i, j \geq 0\right\}$ is a CFL

- Generated by a grammar with rules $S \rightarrow X Y ; X \rightarrow a X b|\epsilon ; Y \rightarrow c Y| \epsilon$.
- $L_{2}=\left\{a^{i} b^{j} c^{j} \mid i, j \geq 0\right\}$ is a CFL.
- Generated by a grammar with rules $S \rightarrow X Y ; X \rightarrow a X|\epsilon ; Y \rightarrow b Y c| \epsilon$.
- But $L_{1} \cap L_{2}=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ is not a CFL.

Intersection with Regular Languages

Proposition 3. If L is a CFL and R is a regular language then $L \cap R$ is a CFL.
Proof. Let P be the PDA that accepts L, and let M be the DFA that accepts R. A new PDA P^{\prime} will simulate P and M simultaneously on the same input and accept if both accept. Then P^{\prime} accepts $L \cap R$.

- The stack of P^{\prime} is the stack of P
- The state of P^{\prime} at any time is the pair (state of P, state of M)
- These determine the transition function of P^{\prime}
- The final states of P^{\prime} are those in which both the state of P and state of M are accepting.

More formally, let $M=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ be a DFA such that $L(M)=R$, and $P=\left(Q_{2}, \Sigma, \Gamma, \delta_{2}, q_{2}, F_{2}\right)$ be a PDA such that $L(P)=L$. Then consider $P^{\prime}=\left(Q, \Sigma, \Gamma, \delta, q_{0}, F\right)$ such that

- $Q=Q_{1} \times Q_{2}$
- $q_{0}=\left(q_{1}, q_{2}\right)$
- $F=F_{1} \times F_{2}$
- $\delta((p, q), x, a)=\left\{\left(\left(p^{\prime}, q^{\prime}\right), b\right) \mid p^{\prime}=\delta_{1}(p, x)\right.$ and $\left.\left(q^{\prime}, b\right) \in \delta_{2}(q, x, a)\right\}$.

One can show by induction on the number of computation steps, that for any $w \in \Sigma^{*}$

$$
\left\langle q_{0}, \epsilon\right\rangle \xrightarrow{w}_{P^{\prime}}\langle(p, q), \sigma\rangle \text { iff } q_{1} \xrightarrow{w}_{M} p \text { and }\left\langle q_{2}, \epsilon\right\rangle \xrightarrow{w}_{P}\langle q, \sigma\rangle
$$

The proof of this statement is left as an exercise. Now as a consequence, we have $w \in L\left(P^{\prime}\right)$ iff $\left\langle q_{0}, \epsilon\right\rangle \xrightarrow{w} P^{\prime}\langle(p, q), \sigma\rangle$ such that $(p, q) \in F$ (by definition of PDA acceptance) iff $\left\langle q_{0}, \epsilon\right\rangle \xrightarrow{w} P_{P^{\prime}}$ $\langle(p, q), \sigma\rangle$ such that $p \in F_{1}$ and $q \in F_{2}$ (by definition of F) iff $q_{1} \xrightarrow{w}_{M} p$ and $\left\langle q_{2}, \epsilon\right\rangle{ }^{w}{ }_{P}\langle q, \sigma\rangle$ and $p \in F_{1}$ and $q \in F_{2}$ (by the statement to be proved as exercise) iff $w \in L(M)$ and $w \in L(P)$ (by definition of DFA acceptance and PDA acceptance).

Why does this construction not work for intersection of two CFLs?

Complementation

Let L be a context free language. Is \bar{L} context free? No!
Proof 1. Suppose CFLs were closed under complementation. Then for any two CFLs L_{1}, L_{2}, we have

- $\overline{L_{1}}$ and $\overline{L_{2}}$ are CFL. Then, since CFLs closed under union, $\overline{L_{1}} \cup \overline{L_{2}}$ is CFL. Then, again by hypothesis, $\overline{\overline{L_{1}} \cup \overline{L_{2}}}$ is CFL.
- i.e., $L_{1} \cap L_{2}$ is a CFL
i.e., CFLs are closed under intersection. Contradiction!

Proof 2. $L=\{x \mid x$ not of the form $w w\}$ is a CFL.

- L generated by a grammar with rules $X \rightarrow a|b, A \rightarrow a| X A X, B \rightarrow b|X B X, S \rightarrow A| B|A B| B A$

But $\bar{L}=\left\{w w \mid w \in\{a, b\}^{*}\right\}$ is not a CFL! (Why?)

Set Difference

Proposition 4. If L_{1} is a CFL and L_{2} is a CFL then $L_{1} \backslash L_{2}$ is not necessarily a CFL
Proof. Because CFLs not closed under complementation, and complementation is a special case of set difference. (How?)

Proposition 5. If L is a CFL and R is a regular language then $L \backslash R$ is a CFL
Proof. $L \backslash R=L \cap \bar{R}$

2 Homomorphism and Inverse Homomorphism

Homomorphism

Proposition 6. Context free languages are closed under homomorphisms.
Proof. Let $G=(V, \Sigma, R, S)$ be the grammar generating L, and let $h: \Sigma^{*} \rightarrow \Gamma^{*}$ be a homomorphism. A grammar $G^{\prime}=\left(V^{\prime}, \Gamma, R^{\prime}, S^{\prime}\right)$ for generating $h(L)$:

- Include all variables from G (i.e., $V^{\prime} \supseteq V$), and let $S^{\prime}=S$
- Treat terminals in G as variables. i.e., for every $a \in \Sigma$
- Add a new variable X_{a} to V^{\prime}
- In each rule of G, if a appears in the RHS, replace it by X_{a}
- For each X_{a}, add the rule $X_{a} \rightarrow h(a)$
G^{\prime} generates $h(L)$. (Exercise!)

Homomorphism

Example 7. Let G have the rules $S \rightarrow 0 S 0|1 S 1| \epsilon$.
Consider the homorphism $h:\{0,1\}^{*} \rightarrow\{a, b\}^{*}$ given by $h(0)=a b a$ and $h(1)=b b$.
Rules of G^{\prime} s.t. $L\left(G^{\prime}\right)=h(L(G))$:

$$
\begin{aligned}
S & \rightarrow X_{0} S X_{0}\left|X_{1} S X_{1}\right| \epsilon \\
X_{0} & \rightarrow a b a \\
X_{1} & \rightarrow b b
\end{aligned}
$$

Inverse Homomorphisms

Recall: For a homomorphism $h, h^{-1}(L)=\{w \mid h(w) \in L\}$
Proposition 8. If L is a $C F L$ then $h^{-1}(L)$ is a CFL

Proof Idea

For regular language L : the DFA for $h^{-1}(L)$ on reading a symbol a, simulated the DFA for L on $h(a)$. Can we do the same with PDAs?

- Key idea: store $h(a)$ in a "buffer" and process symbols from $h(a)$ one at a time (according to the transition function of the original PDA), and the next input symbol is processed only after the "buffer" has been emptied.
- Where to store this "buffer"? In the state of the new PDA!

Proof. Let $P=\left(Q, \Delta, \Gamma, \delta, q_{0}, F\right)$ be a PDA such that $L(P)=L$. Let $h: \Sigma^{*} \rightarrow \Delta^{*}$ be a homomorphism such that $n=\max _{a \in \Sigma}|h(a)|$, i.e., every symbol of Σ is mapped to a string under h of length at most n. Consider the PDA $P^{\prime}=\left(Q^{\prime}, \Sigma, \Gamma, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$ where

- $Q^{\prime}=Q \times \Delta^{\leq n}$, where $\Delta^{\leq n}$ is the collection of all strings of length at most n over Δ.
- $q_{0}^{\prime}=\left(q_{0}, \epsilon\right)$
- $F^{\prime}=F \times\{\epsilon\}$
- δ^{\prime} is given by

$$
\delta^{\prime}((q, v), x, a)= \begin{cases}\{((q, h(x)), \epsilon)\} & \text { if } v=a=\epsilon \\ \{((p, u), b) \mid(p, b) \in \delta(q, y, a)\} & \text { if } v=y u, x=\epsilon, \text { and } y \in \Delta\end{cases}
$$

and $\delta^{\prime}(\cdot)=\emptyset$ in all other cases.
We can show by induction that for every $w \in \Sigma^{*}$

$$
\left\langle q_{0}^{\prime}, \epsilon\right\rangle \xrightarrow{w} P_{P^{\prime}}\langle(q, v), \sigma\rangle \text { iff }\left\langle q_{0}, \epsilon\right\rangle{\xrightarrow{w^{\prime}}}_{P}\langle q, \sigma\rangle
$$

where $h(w)=w^{\prime} v$. Again this induction proof is left as an exercise. Now, $w \in L\left(P^{\prime}\right)$ iff $\left\langle q_{0}^{\prime}, \epsilon\right\rangle \xrightarrow{w} P^{\prime}$ $\langle(q, \epsilon), \sigma\rangle$ where $q \in F$ (by definition of PDA acceptance and $\left.F^{\prime}\right)$ iff $\left\langle q_{0}, \epsilon\right\rangle \xrightarrow{h(w)}{ }_{P}\langle q, \sigma\rangle$ (by exercise) iff $h(w) \in L(P)$ (by definition of PDA acceptance). Thus, $L\left(P^{\prime}\right)=h^{-1}(L(P))=h^{-1}(L)$.

