
CS 373: Theory of Computation

Gul Agha Mahesh Viswanathan

Fall 2010

1

1 Regular operations

Union of CFLs

Let L1 be language recognized by G1 = (V1,Σ1, R1, S1) and L2 the language recognized by
G2 = (V2,Σ2, R2, S2)

Is L1 ∪ L2 a context free language? Yes.
Just add the rule S → S1|S2

But make sure that V1 ∩ V2 = ∅ (by renaming some variables).

Closure of CFLs under Union
G = (V,Σ, R, S) such that L(G) = L(G1) ∪ L(G2):

• V = V1 ∪ V2 ∪ {S} (the three sets are disjoint)

• Σ = Σ1 ∪ Σ2

• R = R1 ∪R2 ∪ {S → S1|S2}

Concatenation, Kleene Closure

Proposition 1. CFLs are closed under concatenation and Kleene closure

Proof. Let L1 be language generated by G1 = (V1,Σ1, R1, S1) and L2 the language generated by
G2 = (V2,Σ2, R2, S2)

• Concatenation: L1L2 generated by a grammar with an additional rule S → S1S2

• Kleene Closure: L∗1 generated by a grammar with an additional rule S → S1S|ε

As before, ensure that V1 ∩ V2 = ∅. S is a new start symbol.
(Exercise: Complete the Proof!)

Intersection

Let L1 and L2 be context free languages. L1 ∩ L2 is not necessarily context free!

Proposition 2. CFLs are not closed under intersection

Proof. • L1 = {aibicj | i, j ≥ 0} is a CFL

– Generated by a grammar with rules S → XY ; X → aXb|ε; Y → cY |ε.

• L2 = {aibjcj | i, j ≥ 0} is a CFL.

– Generated by a grammar with rules S → XY ; X → aX|ε; Y → bY c|ε.

• But L1 ∩ L2 = {anbncn | n ≥ 0} is not a CFL.

2

Intersection with Regular Languages

Proposition 3. If L is a CFL and R is a regular language then L ∩R is a CFL.

Proof. Let P be the PDA that accepts L, and let M be the DFA that accepts R. A new PDA
P ′ will simulate P and M simultaneously on the same input and accept if both accept. Then P ′

accepts L ∩R.

• The stack of P ′ is the stack of P

• The state of P ′ at any time is the pair (state of P , state of M)

• These determine the transition function of P ′

• The final states of P ′ are those in which both the state of P and state of M are accepting.

More formally, letM = (Q1,Σ, δ1, q1, F1) be a DFA such that L(M) = R, and P = (Q2,Σ,Γ, δ2, q2, F2)
be a PDA such that L(P) = L. Then consider P ′ = (Q,Σ,Γ, δ, q0, F) such that

• Q = Q1 ×Q2

• q0 = (q1, q2)

• F = F1 × F2

• δ((p, q), x, a) = {((p′, q′), b) | p′ = δ1(p, x) and (q′, b) ∈ δ2(q, x, a)}.

One can show by induction on the number of computation steps, that for any w ∈ Σ∗

〈q0, ε〉
w−→P ′ 〈(p, q), σ〉 iff q1

w−→M p and 〈q2, ε〉
w−→P 〈q, σ〉

The proof of this statement is left as an exercise. Now as a consequence, we have w ∈ L(P ′)
iff 〈q0, ε〉

w−→P ′ 〈(p, q), σ〉 such that (p, q) ∈ F (by definition of PDA acceptance) iff 〈q0, ε〉
w−→P ′

〈(p, q), σ〉 such that p ∈ F1 and q ∈ F2 (by definition of F) iff q1
w−→M p and 〈q2, ε〉

w−→P 〈q, σ〉 and
p ∈ F1 and q ∈ F2 (by the statement to be proved as exercise) iff w ∈ L(M) and w ∈ L(P) (by
definition of DFA acceptance and PDA acceptance).

Why does this construction not work for intersection of two CFLs?

Complementation

Let L be a context free language. Is L context free? No!

Proof 1. Suppose CFLs were closed under complementation. Then for any two CFLs L1, L2, we
have

• L1 and L2 are CFL. Then, since CFLs closed under union, L1 ∪ L2 is CFL. Then, again by

hypothesis, L1 ∪ L2 is CFL.

• i.e., L1 ∩ L2 is a CFL

3

i.e., CFLs are closed under intersection. Contradiction!

Proof 2. L = {x | x not of the form ww} is a CFL.

• L generated by a grammar with rules X → a|b, A→ a|XAX, B → b|XBX, S → A|B|AB|BA

But L = {ww | w ∈ {a, b}∗} is not a CFL! (Why?)

Set Difference

Proposition 4. If L1 is a CFL and L2 is a CFL then L1 \ L2 is not necessarily a CFL

Proof. Because CFLs not closed under complementation, and complementation is a special case of
set difference. (How?)

Proposition 5. If L is a CFL and R is a regular language then L \R is a CFL

Proof. L \R = L ∩R

2 Homomorphism and Inverse Homomorphism

Homomorphism

Proposition 6. Context free languages are closed under homomorphisms.

Proof. Let G = (V,Σ, R, S) be the grammar generating L, and let h : Σ∗ → Γ∗ be a homomorphism.
A grammar G′ = (V ′,Γ, R′, S′) for generating h(L):

• Include all variables from G (i.e., V ′ ⊇ V), and let S′ = S

• Treat terminals in G as variables. i.e., for every a ∈ Σ

– Add a new variable Xa to V ′

– In each rule of G, if a appears in the RHS, replace it by Xa

• For each Xa, add the rule Xa → h(a)

G′ generates h(L). (Exercise!)

Homomorphism

4

Example 7. Let G have the rules S → 0S0|1S1|ε.
Consider the homorphism h : {0, 1}∗ → {a, b}∗ given by h(0) = aba and h(1) = bb.
Rules of G′ s.t. L(G′) = h(L(G)):

S → X0SX0|X1SX1|ε
X0 → aba

X1 → bb

Inverse Homomorphisms

Recall: For a homomorphism h, h−1(L) = {w | h(w) ∈ L}

Proposition 8. If L is a CFL then h−1(L) is a CFL

Proof Idea
For regular language L: the DFA for h−1(L) on reading a symbol a, simulated the DFA for L on
h(a). Can we do the same with PDAs?

• Key idea: store h(a) in a “buffer” and process symbols from h(a) one at a time (according
to the transition function of the original PDA), and the next input symbol is processed only
after the “buffer” has been emptied.

• Where to store this “buffer”? In the state of the new PDA!

Proof. Let P = (Q,∆,Γ, δ, q0, F) be a PDA such that L(P) = L. Let h : Σ∗ → ∆∗ be a homomor-
phism such that n = maxa∈Σ |h(a)|, i.e., every symbol of Σ is mapped to a string under h of length
at most n. Consider the PDA P ′ = (Q′,Σ,Γ, δ′, q′0, F

′) where

• Q′ = Q×∆≤n, where ∆≤n is the collection of all strings of length at most n over ∆.

• q′0 = (q0, ε)

• F ′ = F × {ε}

• δ′ is given by

δ′((q, v), x, a) =

{
{((q, h(x)), ε)} if v = a = ε

{((p, u), b) | (p, b) ∈ δ(q, y, a)} if v = yu, x = ε, and y ∈ ∆

and δ′(·) = ∅ in all other cases.

We can show by induction that for every w ∈ Σ∗

〈q′0, ε〉
w−→P ′ 〈(q, v), σ〉 iff 〈q0, ε〉

w′
−→P 〈q, σ〉

where h(w) = w′v. Again this induction proof is left as an exercise. Now, w ∈ L(P ′) iff 〈q′0, ε〉
w−→P ′

〈(q, ε), σ〉 where q ∈ F (by definition of PDA acceptance and F ′) iff 〈q0, ε〉
h(w)−→P 〈q, σ〉 (by exercise)

iff h(w) ∈ L(P) (by definition of PDA acceptance). Thus, L(P ′) = h−1(L(P)) = h−1(L).

5

	Regular operations
	Homomorphism and Inverse Homomorphism

