CS 373: Theory of Computation

Gul Agha Mahesh Viswanathan

Fall 2010

1 Regular operations

Union of CFLs

Let L_1 be language recognized by $G_1 = (V_1, \Sigma_1, R_1, S_1)$ and L_2 the language recognized by $G_2 = (V_2, \Sigma_2, R_2, S_2)$ Is $L_1 + L_2$ a context free language? Ves

Is $L_1 \cup L_2$ a context free language? Yes. Just add the rule $S \to S_1 | S_2$ But make sure that $V_1 \cap V_2 = \emptyset$ (by renaming some variables).

Closure of CFLs under Union

 $G = (V, \Sigma, R, S)$ such that $L(G) = L(G_1) \cup L(G_2)$:

- $V = V_1 \cup V_2 \cup \{S\}$ (the three sets are disjoint)
- $\Sigma = \Sigma_1 \cup \Sigma_2$
- $R = R_1 \cup R_2 \cup \{S \rightarrow S_1 | S_2\}$

Concatenation, Kleene Closure

Proposition 1. CFLs are closed under concatenation and Kleene closure

Proof. Let L_1 be language generated by $G_1 = (V_1, \Sigma_1, R_1, S_1)$ and L_2 the language generated by $G_2 = (V_2, \Sigma_2, R_2, S_2)$

- Concatenation: L_1L_2 generated by a grammar with an additional rule $S \to S_1S_2$
- Kleene Closure: L_1^* generated by a grammar with an additional rule $S \to S_1 S | \epsilon$

As before, ensure that $V_1 \cap V_2 = \emptyset$. S is a new start symbol. (Exercise: Complete the Proof!)

Intersection

Let L_1 and L_2 be context free languages. $L_1 \cap L_2$ is not necessarily context free!

Proposition 2. CFLs are not closed under intersection

Proof. • $L_1 = \{a^i b^i c^j \mid i, j \ge 0\}$ is a CFL

- Generated by a grammar with rules $S \to XY$; $X \to aXb|\epsilon$; $Y \to cY|\epsilon$.
- $L_2 = \{a^i b^j c^j \mid i, j \ge 0\}$ is a CFL.
 - Generated by a grammar with rules $S \to XY$; $X \to aX | \epsilon$; $Y \to bYc | \epsilon$.
- But $L_1 \cap L_2 = \{a^n b^n c^n \mid n \ge 0\}$ is not a CFL.

Intersection with Regular Languages

Proposition 3. If L is a CFL and R is a regular language then $L \cap R$ is a CFL.

Proof. Let P be the PDA that accepts L, and let M be the DFA that accepts R. A new PDA P' will simulate P and M simultaneously on the same input and accept if both accept. Then P' accepts $L \cap R$.

- The stack of P' is the stack of P
- The state of P' at any time is the pair (state of P, state of M)
- These determine the transition function of P'
- The final states of P' are those in which both the state of P and state of M are accepting.

More formally, let $M = (Q_1, \Sigma, \delta_1, q_1, F_1)$ be a DFA such that L(M) = R, and $P = (Q_2, \Sigma, \Gamma, \delta_2, q_2, F_2)$ be a PDA such that L(P) = L. Then consider $P' = (Q, \Sigma, \Gamma, \delta, q_0, F)$ such that

- $Q = Q_1 \times Q_2$
- $q_0 = (q_1, q_2)$
- $F = F_1 \times F_2$
- $\delta((p,q), x, a) = \{((p',q'), b) \mid p' = \delta_1(p,x) \text{ and } (q',b) \in \delta_2(q,x,a)\}.$

One can show by induction on the number of computation steps, that for any $w \in \Sigma^*$

$$\langle q_0, \epsilon \rangle \xrightarrow{w}_{P'} \langle (p,q), \sigma \rangle$$
 iff $q_1 \xrightarrow{w}_M p$ and $\langle q_2, \epsilon \rangle \xrightarrow{w}_P \langle q, \sigma \rangle$

The proof of this statement is left as an exercise. Now as a consequence, we have $w \in L(P')$ iff $\langle q_0, \epsilon \rangle \xrightarrow{w}_{P'} \langle (p,q), \sigma \rangle$ such that $(p,q) \in F$ (by definition of PDA acceptance) iff $\langle q_0, \epsilon \rangle \xrightarrow{w}_{P'} \langle (p,q), \sigma \rangle$ such that $p \in F_1$ and $q \in F_2$ (by definition of F) iff $q_1 \xrightarrow{w}_M p$ and $\langle q_2, \epsilon \rangle \xrightarrow{w}_P \langle q, \sigma \rangle$ and $p \in F_1$ and $q \in F_2$ (by the statement to be proved as exercise) iff $w \in L(M)$ and $w \in L(P)$ (by definition of DFA acceptance and PDA acceptance).

Why does this construction not work for intersection of two CFLs?

Complementation

Let L be a context free language. Is \overline{L} context free? No!

Proof 1. Suppose CFLs were closed under complementation. Then for any two CFLs L_1 , L_2 , we have

- $\overline{L_1}$ and $\overline{L_2}$ are CFL. Then, since CFLs closed under union, $\overline{L_1} \cup \overline{L_2}$ is CFL. Then, again by hypothesis, $\overline{\overline{L_1} \cup \overline{L_2}}$ is CFL.
- i.e., $L_1 \cap L_2$ is a CFL

i.e., CFLs are closed under intersection. Contradiction!

Proof 2. $L = \{x \mid x \text{ not of the form } ww\}$ is a CFL.

• L generated by a grammar with rules $X \to a|b, A \to a|XAX, B \to b|XBX, S \to A|B|AB|BA$

But $\overline{L} = \{ww \mid w \in \{a, b\}^*\}$ is not a CFL! (Why?)

Set Difference

Proposition 4. If L_1 is a CFL and L_2 is a CFL then $L_1 \setminus L_2$ is not necessarily a CFL

Proof. Because CFLs not closed under complementation, and complementation is a special case of set difference. (How?)

Proposition 5. If L is a CFL and R is a regular language then $L \setminus R$ is a CFL

Proof. $L \setminus R = L \cap \overline{R}$

2 Homomorphism and Inverse Homomorphism

Homomorphism

Proposition 6. Context free languages are closed under homomorphisms.

Proof. Let $G = (V, \Sigma, R, S)$ be the grammar generating L, and let $h : \Sigma^* \to \Gamma^*$ be a homomorphism. A grammar $G' = (V', \Gamma, R', S')$ for generating h(L):

- Include all variables from G (i.e., $V' \supseteq V$), and let S' = S
- Treat terminals in G as variables. i.e., for every $a \in \Sigma$
 - Add a new variable X_a to V'
 - In each rule of G, if a appears in the RHS, replace it by X_a
- For each X_a , add the rule $X_a \to h(a)$

G' generates h(L). (Exercise!)

Homomorphism

Example 7. Let G have the rules $S \to 0S0|1S1|\epsilon$.

Consider the homorphism $h : \{0, 1\}^* \to \{a, b\}^*$ given by h(0) = aba and h(1) = bb. Rules of G' s.t. L(G') = h(L(G)):

$$S \rightarrow X_0 S X_0 | X_1 S X_1 | \epsilon$$

$$X_0 \rightarrow aba$$

$$X_1 \rightarrow bb$$

Inverse Homomorphisms

Recall: For a homomorphism $h, h^{-1}(L) = \{w \mid h(w) \in L\}$

Proposition 8. If L is a CFL then $h^{-1}(L)$ is a CFL

Proof Idea

For regular language L: the DFA for $h^{-1}(L)$ on reading a symbol a, simulated the DFA for L on h(a). Can we do the same with PDAs?

- Key idea: store h(a) in a "buffer" and process symbols from h(a) one at a time (according to the transition function of the original PDA), and the next input symbol is processed only after the "buffer" has been emptied.
- Where to store this "buffer"? In the state of the new PDA!

Proof. Let $P = (Q, \Delta, \Gamma, \delta, q_0, F)$ be a PDA such that L(P) = L. Let $h : \Sigma^* \to \Delta^*$ be a homomorphism such that $n = \max_{a \in \Sigma} |h(a)|$, i.e., every symbol of Σ is mapped to a string under h of length at most n. Consider the PDA $P' = (Q', \Sigma, \Gamma, \delta', q'_0, F')$ where

- $Q' = Q \times \Delta^{\leq n}$, where $\Delta^{\leq n}$ is the collection of all strings of length at most n over Δ .
- $q'_0 = (q_0, \epsilon)$
- $F' = F \times \{\epsilon\}$
- δ' is given by

$$\delta'((q,v),x,a) = \begin{cases} \{((q,h(x)),\epsilon)\} & \text{if } v = a = \epsilon \\ \{((p,u),b) \mid (p,b) \in \delta(q,y,a)\} & \text{if } v = yu, x = \epsilon, \text{ and } y \in \Delta \end{cases}$$

and $\delta'(\cdot) = \emptyset$ in all other cases.

We can show by induction that for every $w \in \Sigma^*$

$$\langle q'_0, \epsilon \rangle \xrightarrow{w}_{P'} \langle (q, v), \sigma \rangle \text{ iff } \langle q_0, \epsilon \rangle \xrightarrow{w'}_{P} \langle q, \sigma \rangle$$

where h(w) = w'v. Again this induction proof is left as an exercise. Now, $w \in L(P')$ iff $\langle q'_0, \epsilon \rangle \xrightarrow{w}_{P'} \langle (q, \epsilon), \sigma \rangle$ where $q \in F$ (by definition of PDA acceptance and F') iff $\langle q_0, \epsilon \rangle \xrightarrow{h(w)}_{P} \langle q, \sigma \rangle$ (by exercise) iff $h(w) \in L(P)$ (by definition of PDA acceptance). Thus, $L(P') = h^{-1}(L(P)) = h^{-1}(L)$.