CS 373: Theory of Computation

Gul Agha Mahesh Viswanathan

Fall 2010

1 Operations on Languages

Operations on Languages

- Recall: A language is a set of strings
- We can consider new languages derived from operations on given languages
- e.g., $L_{1} \cup L_{2}, L_{1} \cap L_{2}, \frac{1}{2} L, \ldots$
- A simple but powerful collection of operations:
- Union, Concatenation and Kleene Closure

Union is a familiar operation on sets. We define and explain the other two operations below. Concatenation of Languages

Definition 1. Given languages L_{1} and L_{2}, we define their concatenation to be the language $L_{1} \circ$ $L_{2}=\left\{x y \mid x \in L_{1}, y \in L_{2}\right\}$
Example 2. - $L_{1}=\{$ hello $\}$ and $L_{2}=\{$ world $\}$ then $L_{1} \circ L_{2}=\{$ helloworld $\}$

- $L_{1}=\{00,10\} ; L_{2}=\{0,1\} . L_{1} \circ L_{2}=\{000,001,100,101\}$
- $L_{1}=$ set of strings ending in $0 ; L_{2}=$ set of strings beginning with 01. $L_{1} \circ L_{2}=$ set of strings containing 001 as a substring
- $L \circ\{\epsilon\}=L . L \circ \emptyset=\emptyset$.

Kleene Closure

Definition 3.

$$
L^{n}=\left\{\begin{array}{ll}
\{\epsilon\} & \text { if } n=0 \\
L^{n-1} \circ L & \text { otherwise }
\end{array} \quad L^{*}=\bigcup_{i \geq 0} L^{i}\right.
$$

i.e., L^{i} is $L \circ L \circ \cdots \circ L$ (concatenation of i copies of L), for $i>0$.
L^{*}, the Kleene Closure of L : set of strings formed by taking any number of strings (possibly none) from L, possibly with repetitions and concatenating all of them.

- If $L=\{0,1\}$, then $L^{0}=\{\epsilon\}, L^{2}=\{00,01,10,11\} . L^{*}=$ set of all binary strings (including $\epsilon)$.
- $\emptyset^{0}=\{\epsilon\}$. For $i>0, \emptyset^{i}=\emptyset . \quad \emptyset^{*}=\{\epsilon\}$
- \emptyset is one of only two languages whose Kleene closure is finite. Which is the other? $\{\epsilon\}^{*}=\{\epsilon\}$.

2 Regular Expressions

2.1 Definition and Identities

Regular Expressions

A Simple Programming Language

Figure 1: Stephen Cole Kleene

A regular expression is a formula for representing a (complex) language in terms of "elementary" languages combined using the three operations union, concatenation and Kleene closure.

Regular Expressions

Formal Inductive Definition

Syntax and Semantics

A regular expression over an alphabet Σ is of one of the following forms:

	Syntax	Semantics
	\emptyset	$L(\emptyset)=\{ \}$
Basis	ϵ	$L(\epsilon)=\{\epsilon\}$
	a	$L(a)=\{a\}$
	$\left(R_{1} \cup R_{2}\right)$	$L\left(\left(R_{1} \cup R_{2}\right)\right)=L\left(R_{1}\right) \cup L\left(R_{2}\right)$
Induction	$\left(R_{1} \circ R_{2}\right)$	$L\left(\left(R_{1} \circ R_{2}\right)\right)=L\left(R_{1}\right) \circ L\left(R_{2}\right)$
	$\left(R_{1}^{*}\right)$	$L\left(\left(R_{1}^{*}\right)\right)=L\left(R_{1}\right)^{*}$

Notational Conventions

Removing the brackets
To avoid cluttering of parenthesis, we adopt the following conventions.

- Precedence: $*, \circ, \cup$. For example, $R \cup S^{*} \circ T$ means $\left(R \cup\left(\left(S^{*}\right) \circ T\right)\right)$
- Associativity: $(R \cup(S \cup T))=((R \cup S) \cup T)=R \cup S \cup T$ and $(R \circ(S \circ T))=((R \circ S) \circ T)=R \circ S \circ T$.

Also will sometimes omit o: e.g. will write $R S$ instead of $R \circ S$

Regular Expression Examples

```
R L(R)
(0\cup1)* = ({0}\cup{1})* ={0,1}*
0\emptyset
0*}\cup(\mp@subsup{0}{}{*}1\mp@subsup{0}{}{*}10*1\mp@subsup{0}{}{*}\mp@subsup{)}{}{*
(0\cup1)*001(0\cup 1)*
```

```
\emptyset
```

\emptyset
Strings where the number of
Strings where the number of
1s is divisible by }
1s is divisible by }
Strings that have 001 as a sub-
Strings that have 001 as a sub-
string

```
string
```


More Examples

$R \quad L(R)$
$(10)^{*} \cup(01)^{*} \cup 0(10)^{*} \cup 1(01)^{*} \quad$ Strings that consist of alternating 0s and 1s
$(\epsilon \cup 1)(01)^{*}(\epsilon \cup 0)$
$(0 \cup \epsilon)(1 \cup 10)^{*}$
Strings that consist of alternating 0s and 1s
Strings that do not have two consecutive 0s

Some Regular Expression Identities

We say $R_{1}=R_{2}$ if $L\left(R_{1}\right)=L\left(R_{2}\right)$.

- Commutativity: $R_{1} \cup R_{2}=R_{2} \cup R_{1}$ (but $R_{1} \circ R_{2} \neq R_{2} \circ R_{1}$ typically)
- Associativity: $\left(R_{1} \cup R_{2}\right) \cup R_{3}=R_{1} \cup\left(R_{2} \cup R_{3}\right)$ and $\left(R_{1} \circ R_{2}\right) \circ R_{3}=R_{1} \circ\left(R_{2} \circ R_{3}\right)$
- Distributivity: $R \circ\left(R_{1} \cup R_{2}\right)=R \circ R_{1} \cup R \circ R_{2}$ and $\left(R_{1} \cup R_{2}\right) \circ R=R_{1} \circ R \cup R_{2} \circ R$
- Concatenating with $\epsilon: R \circ \epsilon=\epsilon \circ R=R$
- Concatenating with $\emptyset: R \circ \emptyset=\emptyset \circ R=\emptyset$
- $R \cup \emptyset=R . R \cup \epsilon=R$ iff $\epsilon \in L(R)$
- $\left(R^{*}\right)^{*}=R^{*}$
- $\emptyset^{*}=\epsilon$

Useful Notation

Definition 4. Define $R^{+}=R R^{*}$. Thus, $R^{*}=R^{+} \cup \epsilon$. In addition, $R^{+}=R^{*}$ iff $\epsilon \in L(R)$.

2.2 Regular Expressions and Regular Languages

Regular Expressions and Regular Languages

Why do they have such similar names?
Theorem 5. L is a regular language if and only if there is a regular expression R such that $L(R)=L$
i.e., Regular expressions have the same "expressive power" as finite automata.

Proof. - Given regular expression R, will construct $N F A N$ such that $L(N)=L(R)$

- Given $D F A M$, will construct regular expression R such that $L(M)=L(R)$

2.3 Regular Expressions to NFA

Regular Expressions to Finite Automata

... to Non-determinstic Finite Automata
Lemma 6. For any regex R, there is an $N F A N_{R}$ s.t. $L\left(N_{R}\right)=L(R)$.

Proof Idea
We will build the NFA N_{R} for R, inductively, based on the number of operators in $R, \#(R)$.

- Base Case: $\#(R)=0$ means that R is \emptyset, ϵ, or a (from some $a \in \Sigma$). We will build NFAs for these cases.
- Induction Hypothesis: Assume that for regular expressions R, with $\#(R) \leq n$, there is an NFA N_{R} s.t. $L\left(N_{R}\right)=L(R)$.
- Induction Step: Consider R with $\#(R)=n+1$. Based on the form of R, the NFA N_{R} will be built using the induction hypothesis.

Regular Expression to NFA

Base Cases

If R is an elementary regular expression, NFA N_{R} is constructed as follows.

$$
\begin{equation*}
R=\emptyset \tag{0}
\end{equation*}
$$

$$
\begin{equation*}
R=\epsilon \tag{0}
\end{equation*}
$$

$$
R=a
$$

Induction Step: Union

Case $R=R_{1} \cup R_{2}$
By induction hypothesis, there are N_{1}, N_{2} s.t. $L\left(N_{1}\right)=L\left(R_{1}\right)$ and $L\left(N_{2}\right)=L\left(R_{2}\right)$. Build NFA N s.t. $L(N)=L\left(N_{1}\right) \cup L\left(N_{2}\right)$

Figure 2: NFA for $L\left(N_{1}\right) \cup L\left(N_{2}\right)$

Induction Step: Union

Formal Definition
Case $R=R_{1} \cup R_{2}$
Let $N_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ and $N_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)\left(\right.$ with $\left.Q_{1} \cap Q_{2}=\emptyset\right)$ such that $L\left(N_{1}\right)=L\left(R_{1}\right)$ and $L\left(N_{2}\right)=L\left(R_{2}\right)$. The NFA $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is given by

- $Q=Q_{1} \cup Q_{2} \cup\left\{q_{0}\right\}$, where $q_{0} \notin Q_{1} \cup Q_{2}$
- $F=F_{1} \cup F_{2}$
- δ is defined as follows

$$
\delta(q, a)= \begin{cases}\delta_{1}(q, a) & \text { if } q \in Q_{1} \\ \delta_{2}(q, a) & \text { if } q \in Q_{2} \\ \left\{q_{1}, q_{2}\right\} & \text { if } q=q_{0} \\ \emptyset & \text { otherwise } a=\epsilon\end{cases}
$$

Induction Step: Union

Correctness Proof
Need to show that $w \in L(N)$ iff $w \in L\left(N_{1}\right) \cup L\left(N_{2}\right)$.
$\Rightarrow w \in \underset{w}{L(N)}$ implies $q_{0} \xrightarrow{w}_{N_{w}} q$ for some $q \in F$. Based on the transitions out of $q_{0}, q_{0} \xrightarrow{\epsilon} N$ $q_{1} \xrightarrow{w} N q$ or $q_{0} \xrightarrow{\epsilon} N q_{2} \xrightarrow{w} N q$. Consider $q_{0}{ }^{\epsilon}{ }_{N} q_{1} \xrightarrow{w} N q$. (Other case is similar) This means $q_{1} \xrightarrow{w} N_{1} q$ (as N has the same transition as N_{1} on the states in Q_{1}) and $q \in F_{1}$. This means $w \in L\left(N_{1}\right)$.
$\Leftarrow w \in L\left(N_{1}\right) \cup L\left(N_{2}\right)$. Consider $w \in L\left(N_{1}\right)$; case of $w \in L\left(N_{2}\right)$ is similar. Then, $q_{1} \xrightarrow{w}{ }_{N_{1}} q$ for some $q \in F_{1}$. Thus, $q_{0} \xrightarrow{\epsilon} N q_{1}{ }_{N} q$, and $q \in F$. This means that $w \in L(N)$.

Induction Step: Concatenation

Case $R=R_{1} \circ R_{2}$

- By induction hypothesis, there are N_{1}, N_{2} s.t. $L\left(N_{1}\right)=L\left(R_{1}\right)$ and $L\left(N_{2}\right)=L\left(R_{2}\right)$
- Build NFA N s.t. $L(N)=L\left(N_{1}\right) \circ L\left(N_{2}\right)$

Figure 3: NFA for $L\left(N_{1}\right) \circ L\left(N_{2}\right)$
Formal definition and proof of correctness left as exercise.

Induction Step: Kleene Closure

First Attempt
Case $R=R_{1}^{*}$

- By induction hypothesis, there is N_{1} s.t. $L\left(N_{1}\right)=L\left(R_{1}\right)$
- Build NFA N s.t. $L(N)=\left(L\left(N_{1}\right)\right)^{*}$

Figure 4: NFA accepts $\left(L\left(N_{1}\right)\right)^{+}$
Problem: May not accept ϵ ! One can show that $L(N)=\left(L\left(N_{1}\right)\right)^{+}$.

Induction Step: Kleene Closure

Second Attempt
Case $R=R_{1}^{*}$

- By induction hypothesis, there is N_{1} s.t. $L\left(N_{1}\right)=L\left(R_{1}\right)$
- Build NFA N s.t. $L(N)=\left(L\left(N_{1}\right)\right)^{*}$

Figure 5: NFA accepts $\supseteq\left(L\left(N_{1}\right)\right)^{*}$
Problem: May accept strings that are not in $\left(L\left(N_{1}\right)\right)^{*}$!

Example demonstrating the problem

Figure 6: Example NFA N

Figure 7: Incorrect Kleene Closure of N
$L(N)=(0 \cup 1)^{*} 1(0 \cup 1)^{*}$. Thus, $(L(N))^{*}=\epsilon \cup(0 \cup 1)^{*} 1(0 \cup 1)^{*}$. The previous construction, gives an NFA that accepts $0 \notin(L(N))^{*}!$

Induction Step: Kleene Closure

Correct Construction
Case $R=R_{1}^{*}$

- First build N_{1} s.t. $L\left(N_{1}\right)=L\left(R_{1}\right)$
- Given N_{1} build NFA N s.t. $L(N)=L\left(N_{1}^{*}\right)$

Figure 8: NFA for $L\left(N_{1}\right)^{*}$
Formal definition and proof of correctness left as exercise.

Regular Expressions to NFA

To Summarize
We built an NFA N_{R} for each regular expression R inductively

- When R was an elementary regular expression, we gave an explicit construction of an NFA recognizing $L(R)$
- When $R=R_{1}$ op R_{2} (or $R=\mathrm{op}\left(R_{1}\right)$), we constructed an NFA N for R, using the NFAs for R_{1} and R_{2}.

Regular Expressions to NFA

An Example
Build NFA for $(1 \cup 01)^{*}$

Example Continued

Build NFA for $(1 \cup 01)^{*}$

$$
N_{(1 \cup 01)^{*}}
$$

Today

- Defined Regular Expressions
- Syntax: what a regex is built out of - \emptyset, ϵ, characters in Σ, and operators $\cup, \circ,{ }^{*}$.
- Semantics: what language a regex stands for.
- Expressive power of regular expressions: can express (any and only) regular languages
- Today: Languages represented by regular expressions are regular (we showed how to build NFAs for them).
- Coming up: Regular languages can be represented by regular expressions (by building regex for any given DFA).

