
CS 373: Theory of Computation

Gul Agha Mahesh Viswanathan

Fall 2010

1



1 Operations on Languages

Operations on Languages

• Recall: A language is a set of strings

• We can consider new languages derived from operations on given languages

– e.g., L1 ∪ L2, L1 ∩ L2,
1
2L, . . .

• A simple but powerful collection of operations:

– Union, Concatenation and Kleene Closure

Union is a familiar operation on sets. We define and explain the other two operations below.
Concatenation of Languages

Definition 1. Given languages L1 and L2, we define their concatenation to be the language L1 ◦
L2 = {xy | x ∈ L1, y ∈ L2}

Example 2. • L1 = {hello} and L2 = {world} then L1 ◦ L2 = {helloworld}

• L1 = {00, 10}; L2 = {0, 1}. L1 ◦ L2 = {000, 001, 100, 101}

• L1 = set of strings ending in 0; L2 = set of strings beginning with 01. L1 ◦L2 = set of strings
containing 001 as a substring

• L ◦ {ε} = L. L ◦ ∅ = ∅.

Kleene Closure

Definition 3.

Ln =

{
{ε} if n = 0

Ln−1 ◦ L otherwise
L∗ =

⋃
i≥0

Li

i.e., Li is L ◦ L ◦ · · · ◦ L (concatenation of i copies of L), for i > 0.
L∗, the Kleene Closure of L: set of strings formed by taking any number of strings (possibly

none) from L, possibly with repetitions and concatenating all of them.

• If L = {0, 1}, then L0 ={ε}, L2 = {00, 01, 10, 11}. L∗ = set of all binary strings (including
ε).

• ∅0 = {ε}. For i > 0, ∅i = ∅. ∅∗ = {ε}

• ∅ is one of only two languages whose Kleene closure is finite. Which is the other? {ε}∗ = {ε}.

2



2 Regular Expressions

2.1 Definition and Identities

Regular Expressions
A Simple Programming Language

Figure 1: Stephen Cole Kleene

A regular expression is a formula for representing a (complex) language in terms of “elementary”
languages combined using the three operations union, concatenation and Kleene closure.

Regular Expressions
Formal Inductive Definition

Syntax and Semantics
A regular expression over an alphabet Σ is of one of the following forms:

Syntax Semantics
∅ L(∅) = {}

Basis ε L(ε) = {ε}
a L(a) = {a}

(R1 ∪R2) L((R1 ∪R2)) = L(R1) ∪ L(R2)
Induction (R1 ◦R2) L((R1 ◦R2)) = L(R1) ◦ L(R2)

(R∗1) L((R∗1)) = L(R1)
∗

Notational Conventions
Removing the brackets

To avoid cluttering of parenthesis, we adopt the following conventions.

• Precedence: ∗, ◦,∪. For example, R ∪ S∗ ◦ T means (R ∪ ((S∗) ◦ T ))

• Associativity: (R∪(S∪T )) = ((R∪S)∪T ) = R∪S∪T and (R◦(S◦T )) = ((R◦S)◦T ) = R◦S◦T .

Also will sometimes omit ◦: e.g. will write RS instead of R ◦ S

Regular Expression Examples

3



R L(R)
(0 ∪ 1)∗ = ({0} ∪ {1})∗ = {0, 1}∗
0∅ ∅
0∗ ∪ (0∗10∗10∗10∗)∗ Strings where the number of

1s is divisible by 3
(0 ∪ 1)∗001(0 ∪ 1)∗ Strings that have 001 as a sub-

string

More Examples

R L(R)
(10)∗ ∪ (01)∗ ∪ 0(10)∗ ∪ 1(01)∗ Strings that consist of alter-

nating 0s and 1s
(ε ∪ 1)(01)∗(ε ∪ 0) Strings that consist of alter-

nating 0s and 1s
(0 ∪ ε)(1 ∪ 10)∗ Strings that do not have two

consecutive 0s

Some Regular Expression Identities
We say R1 = R2 if L(R1) = L(R2).

• Commutativity: R1 ∪R2 = R2 ∪R1 (but R1 ◦R2 6= R2 ◦R1 typically)

• Associativity: (R1 ∪R2) ∪R3 = R1 ∪ (R2 ∪R3) and (R1 ◦R2) ◦R3 = R1 ◦ (R2 ◦R3)

• Distributivity: R ◦ (R1 ∪R2) = R ◦R1 ∪R ◦R2 and (R1 ∪R2) ◦R = R1 ◦R ∪R2 ◦R

• Concatenating with ε: R ◦ ε = ε ◦R = R

• Concatenating with ∅: R ◦ ∅ = ∅ ◦R = ∅

• R ∪ ∅ = R. R ∪ ε = R iff ε ∈ L(R)

• (R∗)∗ = R∗

• ∅∗ = ε

Useful Notation

Definition 4. Define R+ = RR∗. Thus, R∗ = R+ ∪ ε. In addition, R+ = R∗ iff ε ∈ L(R).

4



2.2 Regular Expressions and Regular Languages

Regular Expressions and Regular Languages
Why do they have such similar names?

Theorem 5. L is a regular language if and only if there is a regular expression R such that
L(R) = L

i.e., Regular expressions have the same “expressive power” as finite automata.

Proof. • Given regular expression R, will construct NFA N such that L(N) = L(R)

• Given DFA M , will construct regular expression R such that L(M) = L(R)

2.3 Regular Expressions to NFA

Regular Expressions to Finite Automata
. . . to Non-determinstic Finite Automata

Lemma 6. For any regex R, there is an NFA NR s.t. L(NR) = L(R).

Proof Idea
We will build the NFA NR for R, inductively, based on the number of operators in R, #(R).

• Base Case: #(R) = 0 means that R is ∅, ε, or a (from some a ∈ Σ). We will build NFAs for
these cases.

• Induction Hypothesis: Assume that for regular expressions R, with #(R) ≤ n, there is an
NFA NR s.t. L(NR) = L(R).

• Induction Step: Consider R with #(R) = n + 1. Based on the form of R, the NFA NR will
be built using the induction hypothesis.

Regular Expression to NFA

Base Cases
If R is an elementary regular expression, NFA NR is constructed as follows.

R = ∅
q0

R = ε
q0

R = a
q0 q1

a

5



Induction Step: Union

Case R = R1 ∪R2

By induction hypothesis, there are N1, N2 s.t. L(N1) = L(R1) and L(N2) = L(R2). Build NFA N
s.t. L(N) = L(N1) ∪ L(N2)

q0

q1

q11

q12

q2 q21

ε

ε

Figure 2: NFA for L(N1) ∪ L(N2)

Induction Step: Union
Formal Definition

Case R = R1 ∪R2

Let N1 = (Q1,Σ, δ1, q1, F1) and N2 = (Q2,Σ, δ2, q2, F2) (with Q1∩Q2 = ∅) such that L(N1) = L(R1)
and L(N2) = L(R2). The NFA N = (Q,Σ, δ, q0, F ) is given by

• Q = Q1 ∪Q2 ∪ {q0}, where q0 6∈ Q1 ∪Q2

• F = F1 ∪ F2

• δ is defined as follows

δ(q, a) =


δ1(q, a) if q ∈ Q1

δ2(q, a) if q ∈ Q2

{q1, q2} if q = q0 and a = ε
∅ otherwise

Induction Step: Union
Correctness Proof

Need to show that w ∈ L(N) iff w ∈ L(N1) ∪ L(N2).

⇒ w ∈ L(N) implies q0
w−→N q for some q ∈ F . Based on the transitions out of q0, q0

ε−→N

q1
w−→N q or q0

ε−→N q2
w−→N q. Consider q0

ε−→N q1
w−→N q. (Other case is similar) This

means q1
w−→N1 q (as N has the same transition as N1 on the states in Q1) and q ∈ F1. This

means w ∈ L(N1).

6



⇐ w ∈ L(N1)∪L(N2). Consider w ∈ L(N1); case of w ∈ L(N2) is similar. Then, q1
w−→N1 q for

some q ∈ F1. Thus, q0
ε−→N q1

w−→N q, and q ∈ F . This means that w ∈ L(N).

Induction Step: Concatenation

Case R = R1 ◦R2

• By induction hypothesis, there are N1, N2 s.t. L(N1) = L(R1) and L(N2) = L(R2)

• Build NFA N s.t. L(N) = L(N1) ◦ L(N2)

q1

q11

q12

q2 q21

ε

ε

Figure 3: NFA for L(N1) ◦ L(N2)

Formal definition and proof of correctness left as exercise.

Induction Step: Kleene Closure
First Attempt

Case R = R∗1

• By induction hypothesis, there is N1 s.t. L(N1) = L(R1)

• Build NFA N s.t. L(N) = (L(N1))
∗

q0

q1

q2

ε

ε

Figure 4: NFA accepts (L(N1))
+

Problem: May not accept ε! One can show that L(N) = (L(N1))
+.

Induction Step: Kleene Closure
Second Attempt

Case R = R∗1

7



• By induction hypothesis, there is N1 s.t. L(N1) = L(R1)

• Build NFA N s.t. L(N) = (L(N1))
∗

q0

q1

q2

ε

ε

Figure 5: NFA accepts ⊇ (L(N1))
∗

Problem: May accept strings that are not in (L(N1))
∗!

Example demonstrating the problem

q0 q1

0, 1

1

0, 1

Figure 6: Example NFA N

q0 q1

0, 1

1

ε

0, 1

Figure 7: Incorrect Kleene Closure of N

L(N) = (0 ∪ 1)∗1(0 ∪ 1)∗. Thus, (L(N))∗ = ε ∪ (0 ∪ 1)∗1(0 ∪ 1)∗. The previous construction, gives
an NFA that accepts 0 6∈ (L(N))∗!

Induction Step: Kleene Closure
Correct Construction

Case R = R∗1

• First build N1 s.t. L(N1) = L(R1)

• Given N1 build NFA N s.t. L(N) = L(N∗1 )

8



q q0

q1

q2

ε

ε

ε

Figure 8: NFA for L(N1)
∗

Formal definition and proof of correctness left as exercise.

Regular Expressions to NFA
To Summarize

We built an NFA NR for each regular expression R inductively

• When R was an elementary regular expression, we gave an explicit construction of an NFA
recognizing L(R)

• When R = R1 op R2 (or R = op(R1)), we constructed an NFA N for R, using the NFAs for
R1 and R2.

Regular Expressions to NFA
An Example

Build NFA for (1 ∪ 01)∗

N0

0

N1

1

N01

0 ε 1

N1∪01

1

0 ε 1

ε

ε

Example Continued

Build NFA for (1 ∪ 01)∗

N(1∪01)∗

1

0 ε 1

ε

ε

ε

ε

ε

9



Today

• Defined Regular Expressions

– Syntax: what a regex is built out of — ∅, ε, characters in Σ, and operators ∪, ◦, ∗.
– Semantics: what language a regex stands for.

• Expressive power of regular expressions: can express (any and only) regular languages

– Today: Languages represented by regular expressions are regular (we showed how to
build NFAs for them).

– Coming up: Regular languages can be represented by regular expressions (by building
regex for any given DFA).

10


	Operations on Languages
	Regular Expressions
	Definition and Identities
	Regular Expressions and Regular Languages
	Regular Expressions to NFA


