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Applications of Closure Properties

Boolean Operators
Homomorphisms
Inverse Homomorphism

Closure Properties

Recall that we can carry out operations on one or more
languages to obtain a new language

Very useful in studying the properties of one language by
relating it to other (better understood) languages

Most useful when the operations are sophisticated, yet are
guaranteed to preserve interesting properties of the language.

Today: A variety of operations which preserve regularity

i.e., the universe of regular languages is closed under these
operations
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Definition

Regular Languages are closed under an operation op on languages
if

L1, L2, . . . Ln regular =⇒ L = op(L1, L2, . . . Ln) is regular

Example

Regular languages are closed under

“halving”, i.e., L regular =⇒ 1
2L regular.

“reversing”, i.e., L regular =⇒ Lrev regular.
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Operations from Regular Expressions

Proposition

Regular Languages are closed under ∪, ◦ and ∗.

Proof.

(Summarizing previous arguments.)

L1, L2 regular =⇒ ∃ regexes R1, R2 s.t. L1 = L(R1) and
L2 = L(R2).

=⇒ L1 ∪ L2 = L(R1 ∪ R2) =⇒ L1 ∪ L2 regular.
=⇒ L1 ◦ L2 = L(R1 ◦ R2) =⇒ L1 ◦ L2 regular.
=⇒ L∗1 = L(R∗1 ) =⇒ L∗1 regular. �
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Closure Under Complementation

Proposition

Regular Languages are closed under complementation, i.e., if L is
regular then L = Σ∗ \ L is also regular.

Proof.

If L is regular, then there is a DFA M = (Q,Σ, δ, q0,F ) such
that L = L(M).

Then, M = (Q,Σ, δ, q0,Q \ F ) (i.e., switch accept and
non-accept states) accepts L. �

What happens if M (above) was an NFA?
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Closure under ∩

Proposition

Regular Languages are closed under intersection, i.e., if L1 and L2
are regular then L1 ∩ L2 is also regular.

Proof.

Observe that L1 ∩ L2 = L1 ∪ L2. Since regular languages are closed
under union and complementation, we have

L1 and L2 are regular

L1 ∪ L2 is regular

Hence, L1 ∩ L2 = L1 ∪ L2 is regular. �

Is there a direct proof for intersection (yielding a smaller DFA)?
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Cross-Product Construction

Let M1 = (Q1,Σ, δ1, q1,F1) and M2 = (Q2,Σ, δ2, q2,F2) be DFAs
recognizing L1 and L2, respectively.
Idea: Run M1 and M2 in parallel on the same input and accept if
both M1 and M2 accept.

Consider M = (Q,Σ, δ, q0,F ) defined as follows

Q = Q1 × Q2

q0 = 〈q1, q2〉
δ(〈p1, p2〉, a) = 〈δ1(p1, a), δ2(p2, a)〉
F = F1 × F2

M accepts L1 ∩ L2 (exercise)
What happens if M1 and M2 where NFAs? Still works! Set
δ(〈p1, p2〉, a) = δ1(p1, a)× δ2(p2, a).
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An Example

q00

q01

0 0

1

1

× =q10 q11

1

1

0 0 q00 q01

q10 q11

1

1

1

1

0 0 0 0
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Homomorphism

Definition

A homomorphism is function h : Σ∗ → ∆∗ defined as follows:

h(ε) = ε and for a ∈ Σ, h(a) is any string in ∆∗

For a = a1a2 . . . an ∈ Σ∗ (n ≥ 2), h(a) = h(a1)h(a2) . . . h(an).

A homomorphism h maps a string a ∈ Σ∗ to a string in ∆∗ by
mapping each character of a to a string h(a) ∈ ∆∗

A homomorphism is a function from strings to strings that
“respects” concatenation: for any x , y ∈ Σ∗,
h(xy) = h(x)h(y). (Any such function is a homomorphism.)

Example

h : {0, 1} → {a, b}∗ where h(0) = ab and h(1) = ba. Then
h(0011) = ababbaba
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Homomorphism as an Operation on Languages

Definition

Given a homomorphism h : Σ∗ → ∆∗ and a language L ⊆ Σ∗,
define h(L) = {h(w) | w ∈ L} ⊆ ∆∗.

Example

Let L = {0n1n | n ≥ 0} and h(0) = ab and h(1) = ba. Then
h(L) = {(ab)n(ba)n | n ≥ 0}

Exercise: h(L1 ∪ L2) = h(L1) ∪ h(L2). h(L1 ◦ L2) = h(L1) ◦ h(L2),
and h(L∗) = h(L)∗.
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Closure under Homomorphism

Proposition

Regular languages are closed under homomorphism, i.e., if L is a
regular language and h is a homomorphism, then h(L) is also
regular.

Proof.

We will use the representation of regular languages in terms of
regular expressions to argue this.

Define homomorphism as an operation on regular expressions

Show that L(h(R)) = h(L(R))

Let R be such that L = L(R). Let R ′ = h(R). Then
h(L) = L(R ′). ··→
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Applications of Closure Properties

Boolean Operators
Homomorphisms
Inverse Homomorphism

Homomorphism as an Operation on Regular Expressions

Definition

For a regular expression R, let h(R) be the regular expression
obtained by replacing each occurence of a ∈ Σ in R by the string
h(a).

Example

If R = (0 ∪ 1)∗001(0 ∪ 1)∗ and h(0) = ab and h(1) = bc then
h(R) = (ab ∪ bc)∗ababbc(ab ∪ bc)∗

Formally h(R) is defined inductively as follows.

h(∅) = ∅ h(R1R2) = h(R1)h(R2)
h(ε) = ε h(R1 ∪ R2) = h(R2) ∪ h(R2)
h(a) = h(a) h(R∗) = (h(R))∗
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Proof of Claim

Claim

For any regular expression R, L(h(R)) = h(L(R)).

Proof.

By induction on the number of operations in R

Base Cases: For R = ε or ∅, h(R) = R and h(L(R)) = L(R).
For R = a, L(R) = {a} and
h(L(R)) = {h(a)} = L(h(a)) = L(h(R)). So claim holds.

Induction Step: For R = R1 ∪ R2, observe that
h(R) = h(R1) ∪ h(R2) and
h(L(R)) = h(L(R1) ∪ L(R2)) = h(L(R1)) ∪ h(L(R2)). By
induction hypothesis, h(L(Ri )) = L(h(Ri )) and so
h(L(R)) = L(h(R1) ∪ h(R2))
Other cases (R = R1R2 and R = R∗1 ) similar. �
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Nonregularity and Homomorphism

If L is not regular, is h(L) also not regular?

No! Consider L = {0n1n | n ≥ 0} and h(0) = a and h(1) = ε.
Then h(L) = a∗.

Applying a homomorphism can “simplify” a non-regular language
into a regular language.
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Inverse Homomorphism

Definition

Given homomorphism h : Σ∗ → ∆∗ and L ⊆ ∆∗,
h−1(L) = {w ∈ Σ∗ | h(w) ∈ L}

h−1(L) consists of strings whose homomorphic images are in L

Σ∗ ∆∗

h

h−1(L)

L
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Inverse Homomorphism

Example

Let Σ = {a, b}, and ∆ = {0, 1}. Let L = (00 ∪ 1)∗ and h(a) = 01
and h(b) = 10.

h−1(1001) = {ba}, h−1(010110) = {aab}
h−1(L) = (ba)∗

What is h(h−1(L))? (1001)∗ ( L

Note: In general h(h−1(L)) ⊆ L ⊆ h−1(h(L)), but neither
containment is necessarily an equality.
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Closure under Inverse Homomorphism

Proposition

Regular languages are closed under inverse homomorphism, i.e., if
L is regular and h is a homomorphism then h−1(L) is regular.

Proof.

We will use the representation of regular languages in terms of
DFA to argue this.
Given a DFA M recognizing L, construct an DFA M ′ that accepts
h−1(L)

Intuition: On input w M ′ will run M on h(w) and accept if M
does.

··→
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Closure under Inverse Homomorphism

Intuition: On input w M ′ will run M on h(w) and accept if M
does.

Example

L = L ((00 ∪ 1)∗). h(a) = 01, h(b) = 10.

q0 q1

q2

1

0, 1

0

0

1
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Closure under Inverse Homomorphism

Intuition: On input w M ′ will run M on h(w) and accept if M
does.

Example

L = L ((00 ∪ 1)∗). h(a) = 01, h(b) = 10.

q0 q1

q2

1

0, 1

0

0

1a b
b

a

a, b
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Closure under Inverse Homomorphism
Formal Construction

Let M = (Q,∆, δ, q0,F ) accept L ⊆ ∆∗ and let h : Σ∗ → ∆∗

be a homomorphism

Define M ′ = (Q ′,Σ, δ′, q′0,F
′), where

Q ′ = Q
q′0 = q0
F ′ = F , and
δ′(q, a) = δ̂M(q, h(a)); M ′ on input a simulates M on h(a)

M ′ accepts h−1(L)

Because ∀w . δ̂M′(q0,w) = δ̂M(q0, h(w))
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Applications of Closure Properties

Proving Non-Regularity
Proving Regularity
In a nutshell . . .

Proving Non-Regularity

Problem

Show that L = {anban | n ≥ 0} is not regular

Proof.

Use pumping lemma!

Alternate Proof: If we had an automaton M accepting L then we
can construct an automaton accepting K = {0n1n | n ≥ 0}
(“reduction”)
More formally, we will show that by applying a sequence of
“regularity preserving” operations to L we can get K . Then, since
K is not regular, L cannot be regular. ··→
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Proving Non-Regularity
Proving Regularity
In a nutshell . . .

Proving Non-Regularity
Using Closure Properties

Proof (contd).

To show that by applying a sequence of “regularity preserving”
operations to L = {anban | n ≥ 0} we can get K = {0n1n | n ≥ 0}.

Consider homomorphism h1 : {a, b, c}∗ → {a, b, c}∗ defined
as h1(a) = a, h1(b) = b, h1(c) = a.

L1 = h−11 (L) = {(a ∪ c)nb(a ∪ c)n | n ≥ 0}
Let L2 = L1 ∩ L(a∗bc∗) = {anbcn | n ≥ 0}
Homomorphism h2 : {a, b, c}∗ → {0, 1}∗ is defined as
h2(a) = 0, h2(b) = ε, and h2(c) = 1.

L3 = h2(L2) = {0n1n | n ≥ 0} = K

Now if L is regular then so are L1, L2, L3, and K . But K is not
regular, and so L is not regular. �
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Proof (contd).

To show that by applying a sequence of “regularity preserving”
operations to L = {anban | n ≥ 0} we can get K = {0n1n | n ≥ 0}.
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Proving Regularity

Let M = (Q,Σ, δ, q0,F ) be a DFA. Consider

L = {w |M accepts w and M visits every state at least once on input w}

Is L regular?
Note that M does not necessarily accept all strings in L; L ⊆ L(M).

By applying a series of regularity preserving operations to L(M) we
will construct L, thus showing that L is regular
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Computations: Valid and Invalid

Consider an alphabet ∆ consisting of [paq] where p, q ∈ Q,
a ∈ Σ and δ(p, a) = q. So symbols of ∆ represent transitions
of M.

Let h : ∆→ Σ∗ be a homomorphism such that h([paq]) = a

L1 = h−1(L(M)); L1 contains strings of L(M) where each
symbol is associated with a pair of states that represent some
transition

Some strings of L1 represent valid computations of M. But
there are also other strings in L1 which do not correspond to
valid computations of M

We will first remove all the strings from L1 that correspond to
invalid computations, and then remove those that do not visit
every state at least once.
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Only Valid Computations

Strings of ∆∗ that represent valid computations of M satisfy the
following conditions

The first state in the first symbol must be q0

L2 = L1 ∩ (([q0a1q1] ∪ [q0a2q2] ∪ · · · ∪ [q0akqk ])∆∗)

([q0a1q1], . . . [q0akqk ] are all the transitions out of q0 in M)

The first state in one symbol must equal the second state in
previous symbol

L3 = L2 \ (∆∗(
∑
q 6=r

[paq][rbs])∆∗)

Remove “invalid” sequences from L2. Difference of two
regular languages is regular (why?). So L3 is regular.

The second state of the last symbol must be in F . Holds
trivially because L3 only contains strings accepted by M
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Example continued

So far, regular language L3 = set of strings in ∆∗ that represent
valid computations of M.

Let Eq ⊆ ∆ be the set of symbols where q appears neither as
the first nor the second state. Then E ∗q is the set of strings
where q never occurs.

We remove from L3 those strings where some q ∈ Q never
occurs

L4 = L3 \ (
⋃
q∈Q

E ∗q )

Finally we discard the state components in L4

L = h(L4)

Hence, L is regular.
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Proving Regularity and Non-Regularity

Showing that L is not regular

Use the pumping lemma

Or, show that from L you can obtain a known non-regular
language through regularity preserving operations.

Note: Non-regular languages are not closed under the
operations discussed.

Showing that L is regular

Construct a DFA or NFA or regular expression recognizing L

Or, show that L can be obtained from known regular
languages L1, L2, . . . Lk through regularity preserving
operations

Note: Do not use pumping lemma to prove regularity!!
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A list of Regularity-Preserving Operations

Regular languages are closed under the following operations.

Regular Expression operations

Boolean operations: union, intersection, complement

Homomorphism

Inverse Homomorphism

(And several other operations...)
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