CS 373: Theory of Computation

Gul Agha Mahesh Viswanathan

University of Illinois, Urbana-Champaign

Fall 2010

Boolean Operators Homomorphisms Inverse Homomorphism

Closure Properties

• Recall that we can carry out operations on one or more languages to obtain a new language

- Recall that we can carry out operations on one or more languages to obtain a new language
- Very useful in studying the properties of one language by relating it to other (better understood) languages

- Recall that we can carry out operations on one or more languages to obtain a new language
- Very useful in studying the properties of one language by relating it to other (better understood) languages
- Most useful when the operations are sophisticated, yet are guaranteed to preserve interesting properties of the language.

- Recall that we can carry out operations on one or more languages to obtain a new language
- Very useful in studying the properties of one language by relating it to other (better understood) languages
- Most useful when the operations are sophisticated, yet are guaranteed to preserve interesting properties of the language.
- Today: A variety of operations which preserve regularity

- Recall that we can carry out operations on one or more languages to obtain a new language
- Very useful in studying the properties of one language by relating it to other (better understood) languages
- Most useful when the operations are sophisticated, yet are guaranteed to preserve interesting properties of the language.
- Today: A variety of operations which preserve regularity
 - i.e., the universe of regular languages is closed under these operations

Boolean Operators Homomorphisms Inverse Homomorphism

э

Closure Properties

Definition

Regular Languages are closed under an operation op on languages if

$$L_1, L_2, \ldots L_n$$
 regular $\implies L = op(L_1, L_2, \ldots L_n)$ is regular

Boolean Operators Homomorphisms Inverse Homomorphism

Closure Properties

Definition

Regular Languages are closed under an operation op on languages if

$$L_1, L_2, \ldots L_n$$
 regular $\implies L = \operatorname{op}(L_1, L_2, \ldots L_n)$ is regular

Example

Regular languages are closed under

• "halving", i.e., L regular $\implies \frac{1}{2}L$ regular.

Boolean Operators Homomorphisms Inverse Homomorphism

Closure Properties

Definition

Regular Languages are closed under an operation op on languages if

$$L_1, L_2, \ldots L_n$$
 regular $\implies L = \operatorname{op}(L_1, L_2, \ldots L_n)$ is regular

Example

Regular languages are closed under

- "halving", i.e., L regular $\implies \frac{1}{2}L$ regular.
- "reversing", i.e., L regular $\implies L^{rev}$ regular.

Boolean Operators Homomorphisms Inverse Homomorphism

Operations from Regular Expressions

Proposition

Regular Languages are closed under \cup , \circ and *.

Boolean Operators Homomorphisms Inverse Homomorphism

Operations from Regular Expressions

Proposition

Regular Languages are closed under $\cup,\,\circ$ and *.

Proof.

(Summarizing previous arguments.)

- L_1, L_2 regular $\implies \exists$ regexes R_1, R_2 s.t. $L_1 = L(R_1)$ and $L_2 = L(R_2)$.
 - \implies $L_1 \cup L_2 = L(R_1 \cup R_2) \implies$ $L_1 \cup L_2$ regular.

Boolean Operators Homomorphisms Inverse Homomorphism

- 4 同 2 4 日 2 4 H

Operations from Regular Expressions

Proposition

Regular Languages are closed under \cup , \circ and *.

Proof.

(Summarizing previous arguments.)

- L_1, L_2 regular $\implies \exists$ regexes R_1, R_2 s.t. $L_1 = L(R_1)$ and $L_2 = L(R_2)$.
 - \implies $L_1 \cup L_2 = L(R_1 \cup R_2) \implies$ $L_1 \cup L_2$ regular.
 - \implies $L_1 \circ L_2 = L(R_1 \circ R_2) \implies$ $L_1 \circ L_2$ regular.
 - \implies $L_1^* = L(R_1^*) \implies$ L_1^* regular.

Boolean Operators Homomorphisms Inverse Homomorphism

Closure Under Complementation

Proposition

Regular Languages are closed under complementation, i.e., if L is regular then $\overline{L} = \Sigma^* \setminus L$ is also regular.

Boolean Operators Homomorphisms Inverse Homomorphism

Closure Under Complementation

Proposition

Regular Languages are closed under complementation, i.e., if L is regular then $\overline{L} = \Sigma^* \setminus L$ is also regular.

Proof.

If L is regular, then there is a DFA M = (Q, Σ, δ, q₀, F) such that L = L(M).

Boolean Operators Homomorphisms Inverse Homomorphism

Closure Under Complementation

Proposition

Regular Languages are closed under complementation, i.e., if L is regular then $\overline{L} = \Sigma^* \setminus L$ is also regular.

Proof.

- If L is regular, then there is a DFA M = (Q, Σ, δ, q₀, F) such that L = L(M).
- Then, $\overline{M} = (Q, \Sigma, \delta, q_0, Q \setminus F)$ (i.e., switch accept and non-accept states) accepts \overline{L} .

Boolean Operators Homomorphisms Inverse Homomorphism

Closure Under Complementation

Proposition

Regular Languages are closed under complementation, i.e., if L is regular then $\overline{L} = \Sigma^* \setminus L$ is also regular.

Proof.

- If L is regular, then there is a DFA M = (Q, Σ, δ, q₀, F) such that L = L(M).
- Then, M
 = (Q, Σ, δ, q₀, Q \ F) (i.e., switch accept and non-accept states) accepts L

What happens if *M* (above) was an NFA?

∃ >

Closure under \cap

Proposition

Regular Languages are closed under intersection, i.e., if L_1 and L_2 are regular then $L_1 \cap L_2$ is also regular.

Closure under \cap

Proposition

Regular Languages are closed under intersection, i.e., if L_1 and L_2 are regular then $L_1 \cap L_2$ is also regular.

Proof.

Observe that $L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$.

Closure under \cap

Proposition

Regular Languages are closed under intersection, i.e., if L_1 and L_2 are regular then $L_1 \cap L_2$ is also regular.

Proof.

Observe that $L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$. Since regular languages are closed under union and complementation, we have

•
$$\overline{L_1}$$
 and $\overline{L_2}$ are regular

Closure under \cap

Proposition

Regular Languages are closed under intersection, i.e., if L_1 and L_2 are regular then $L_1 \cap L_2$ is also regular.

Proof.

Observe that $L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$. Since regular languages are closed under union and complementation, we have

- $\overline{L_1}$ and $\overline{L_2}$ are regular
- $\overline{L_1} \cup \overline{L_2}$ is regular

Closure under \cap

Proposition

Regular Languages are closed under intersection, i.e., if L_1 and L_2 are regular then $L_1 \cap L_2$ is also regular.

Proof.

Observe that $L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$. Since regular languages are closed under union and complementation, we have

- $\overline{L_1}$ and $\overline{L_2}$ are regular
- $\overline{L_1} \cup \overline{L_2}$ is regular
- Hence, $L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$ is regular.

Closure under \cap

Proposition

Regular Languages are closed under intersection, i.e., if L_1 and L_2 are regular then $L_1\cap L_2$ is also regular.

Proof.

Observe that $L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$. Since regular languages are closed under union and complementation, we have

- $\overline{L_1}$ and $\overline{L_2}$ are regular
- $\overline{L_1} \cup \overline{L_2}$ is regular
- Hence, $L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$ is regular.

Is there a direct proof for intersection (yielding a smaller DFA)?

Boolean Operators Homomorphisms Inverse Homomorphism

Cross-Product Construction

Let $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ and $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ be DFAs recognizing L_1 and L_2 , respectively. Idea: Run M_1 and M_2 in parallel on the same input and accept if

Idea: Run M_1 and M_2 in parallel on the same input and accept if both M_1 and M_2 accept.

Boolean Operators Homomorphisms Inverse Homomorphism

Cross-Product Construction

Let $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ and $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ be DFAs recognizing L_1 and L_2 , respectively. Idea: Run M_1 and M_2 in parallel on the same input and accept if

both M_1 and M_2 accept.

Consider $M = (Q, \Sigma, \delta, q_0, F)$ defined as follows

•
$$Q = Q_1 \times Q_2$$

•
$$q_0 = \langle q_1, q_2 \rangle$$

•
$$\delta(\langle p_1, p_2 \rangle, a) = \langle \delta_1(p_1, a), \delta_2(p_2, a) \rangle$$

•
$$F = F_1 \times F_2$$

Boolean Operators Homomorphisms Inverse Homomorphism

Cross-Product Construction

Let $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ and $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ be DFAs recognizing L_1 and L_2 , respectively. Idea: Run M_1 and M_2 in parallel on the same input and accept if

both M_1 and M_2 accept.

Consider $M = (Q, \Sigma, \delta, q_0, F)$ defined as follows

•
$$Q = Q_1 \times Q_2$$

•
$$q_0 = \langle q_1, q_2 \rangle$$

•
$$\delta(\langle p_1, p_2 \rangle, a) = \langle \delta_1(p_1, a), \delta_2(p_2, a) \rangle$$

• $F = F_1 \times F_2$

M accepts $L_1 \cap L_2$ (exercise)

Boolean Operators Homomorphisms Inverse Homomorphism

Cross-Product Construction

Let $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ and $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ be DFAs recognizing L_1 and L_2 , respectively. Idea: Run M_1 and M_2 in parallel on the same input and accept if

both M_1 and M_2 accept.

Consider $M = (Q, \Sigma, \delta, q_0, F)$ defined as follows

•
$$Q = Q_1 \times Q_2$$

•
$$q_0 = \langle q_1, q_2 \rangle$$

•
$$\delta(\langle p_1, p_2 \rangle, a) = \langle \delta_1(p_1, a), \delta_2(p_2, a) \rangle$$

•
$$F = F_1 \times F_2$$

M accepts $L_1 \cap L_2$ (exercise) What happens if M_1 and M_2 where NFAs?

Boolean Operators

Cross-Product Construction

Let $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ and $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ be DFAs recognizing L_1 and L_2 , respectively. Idea: Run M_1 and M_2 in parallel on the same input and accept if

both M_1 and M_2 accept.

Consider $M = (Q, \Sigma, \delta, q_0, F)$ defined as follows

•
$$Q = Q_1 \times Q_2$$

•
$$q_0 = \langle q_1, q_2 \rangle$$

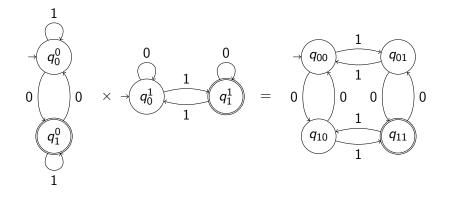
•
$$\delta(\langle p_1, p_2 \rangle, a) = \langle \delta_1(p_1, a), \delta_2(p_2, a) \rangle$$

• $F = F_1 \times F_2$

M accepts $L_1 \cap L_2$ (exercise) What happens if M_1 and M_2 where NFAs? Still works! Set $\delta(\langle p_1, p_2 \rangle, a) = \delta_1(p_1, a) \times \delta_2(p_2, a).$

Boolean Operators Homomorphisms Inverse Homomorphism

An Example



<ロ> <同> <同> < 同> < 同>

æ

글 > - < 글 >

< A ▶

Homomorphism

Definition

A homomorphism is function $h: \Sigma^* \to \Delta^*$ defined as follows:

- $h(\epsilon) = \epsilon$ and for $a \in \Sigma$, h(a) is any string in Δ^*
- For $a = a_1 a_2 \dots a_n \in \Sigma^*$ $(n \ge 2)$, $h(a) = h(a_1)h(a_2) \dots h(a_n)$.

Homomorphism

Definition

A homomorphism is function $h: \Sigma^* \to \Delta^*$ defined as follows:

- $h(\epsilon) = \epsilon$ and for $a \in \Sigma$, h(a) is any string in Δ^*
- For $a = a_1 a_2 \dots a_n \in \Sigma^*$ $(n \ge 2)$, $h(a) = h(a_1)h(a_2) \dots h(a_n)$.
- A homomorphism h maps a string a ∈ Σ* to a string in Δ* by mapping each character of a to a string h(a) ∈ Δ*

Homomorphism

Definition

A homomorphism is function $h: \Sigma^* \to \Delta^*$ defined as follows:

- $h(\epsilon) = \epsilon$ and for $a \in \Sigma$, h(a) is any string in Δ^*
- For $a = a_1 a_2 \dots a_n \in \Sigma^*$ $(n \ge 2)$, $h(a) = h(a_1)h(a_2) \dots h(a_n)$.
- A homomorphism h maps a string a ∈ Σ* to a string in Δ* by mapping each character of a to a string h(a) ∈ Δ*
- A homomorphism is a function from strings to strings that "respects" concatenation: for any x, y ∈ Σ*, h(xy) = h(x)h(y).

Homomorphism

Definition

A homomorphism is function $h: \Sigma^* \to \Delta^*$ defined as follows:

- $h(\epsilon) = \epsilon$ and for $a \in \Sigma$, h(a) is any string in Δ^*
- For $a = a_1 a_2 \dots a_n \in \Sigma^*$ $(n \ge 2)$, $h(a) = h(a_1)h(a_2) \dots h(a_n)$.
- A homomorphism h maps a string a ∈ Σ* to a string in Δ* by mapping each character of a to a string h(a) ∈ Δ*
- A homomorphism is a function from strings to strings that "respects" concatenation: for any $x, y \in \Sigma^*$,

h(xy) = h(x)h(y). (Any such function is a homomorphism.)

Example

 $h: \{0,1\} \rightarrow \{a,b\}^*$ where h(0) = ab and h(1) = ba. Then h(0011) =

Homomorphism

Definition

A homomorphism is function $h: \Sigma^* \to \Delta^*$ defined as follows:

- $h(\epsilon) = \epsilon$ and for $a \in \Sigma$, h(a) is any string in Δ^*
- For $a = a_1 a_2 \dots a_n \in \Sigma^*$ $(n \ge 2)$, $h(a) = h(a_1)h(a_2) \dots h(a_n)$.
- A homomorphism h maps a string a ∈ Σ* to a string in Δ* by mapping each character of a to a string h(a) ∈ Δ*
- A homomorphism is a function from strings to strings that "respects" concatenation: for any $x, y \in \Sigma^*$,

h(xy) = h(x)h(y). (Any such function is a homomorphism.)

Example

$$h: \{0,1\} \rightarrow \{a,b\}^*$$
 where $h(0) = ab$ and $h(1) = ba$. Then $h(0011) = ababbaba$

글 > - < 글 >

< A ▶

Homomorphism as an Operation on Languages

Definition

Given a homomorphism $h : \Sigma^* \to \Delta^*$ and a language $L \subseteq \Sigma^*$, define $h(L) = \{h(w) \mid w \in L\} \subseteq \Delta^*$.

< A >

글 > - < 글 >

Homomorphism as an Operation on Languages

Definition

Given a homomorphism $h : \Sigma^* \to \Delta^*$ and a language $L \subseteq \Sigma^*$, define $h(L) = \{h(w) \mid w \in L\} \subseteq \Delta^*$.

Example

Let
$$L = \{0^{n}1^{n} \mid n \ge 0\}$$
 and $h(0) = ab$ and $h(1) = ba$. Then $h(L) = \{(ab)^{n}(ba)^{n} \mid n \ge 0\}$

A B + A B +

Homomorphism as an Operation on Languages

Definition

Given a homomorphism $h : \Sigma^* \to \Delta^*$ and a language $L \subseteq \Sigma^*$, define $h(L) = \{h(w) \mid w \in L\} \subseteq \Delta^*$.

Example

Let
$$L = \{0^n 1^n \mid n \ge 0\}$$
 and $h(0) = ab$ and $h(1) = ba$. Then $h(L) = \{(ab)^n (ba)^n \mid n \ge 0\}$

Exercise: $h(L_1 \cup L_2) = h(L_1) \cup h(L_2)$.

Homomorphism as an Operation on Languages

Definition

Given a homomorphism $h: \Sigma^* \to \Delta^*$ and a language $L \subseteq \Sigma^*$, define $h(L) = \{h(w) \mid w \in L\} \subseteq \Delta^*$.

Example

Let
$$L = \{0^n 1^n \mid n \ge 0\}$$
 and $h(0) = ab$ and $h(1) = ba$. Then $h(L) = \{(ab)^n (ba)^n \mid n \ge 0\}$

Exercise: $h(L_1 \cup L_2) = h(L_1) \cup h(L_2)$. $h(L_1 \circ L_2) = h(L_1) \circ h(L_2)$, and $h(L^*) = h(L)^*$.

Closure under Homomorphism

Proposition

Regular languages are closed under homomorphism, i.e., if L is a regular language and h is a homomorphism, then h(L) is also regular.

Closure under Homomorphism

Proposition

Regular languages are closed under homomorphism, i.e., if L is a regular language and h is a homomorphism, then h(L) is also regular.

Proof.

We will use the representation of regular languages in terms of regular expressions to argue this.

Closure under Homomorphism

Proposition

Regular languages are closed under homomorphism, i.e., if L is a regular language and h is a homomorphism, then h(L) is also regular.

Proof.

We will use the representation of regular languages in terms of regular expressions to argue this.

• Define homomorphism as an operation on regular expressions

Closure under Homomorphism

Proposition

Regular languages are closed under homomorphism, i.e., if L is a regular language and h is a homomorphism, then h(L) is also regular.

Proof.

We will use the representation of regular languages in terms of regular expressions to argue this.

- Define homomorphism as an operation on regular expressions
- Show that L(h(R)) = h(L(R))

 $\cdots \rightarrow$

Closure under Homomorphism

Proposition

Regular languages are closed under homomorphism, i.e., if L is a regular language and h is a homomorphism, then h(L) is also regular.

Proof.

We will use the representation of regular languages in terms of regular expressions to argue this.

- Define homomorphism as an operation on regular expressions
- Show that L(h(R)) = h(L(R))
- Let R be such that L = L(R). Let R' = h(R). Then h(L) = L(R').

Homomorphism as an Operation on Regular Expressions

Definition

For a regular expression R, let h(R) be the regular expression obtained by replacing each occurrence of $a \in \Sigma$ in R by the string h(a).

Homomorphism as an Operation on Regular Expressions

Definition

For a regular expression R, let h(R) be the regular expression obtained by replacing each occurrence of $a \in \Sigma$ in R by the string h(a).

Example

If $R = (0 \cup 1)^* 001(0 \cup 1)^*$ and h(0) = ab and h(1) = bc then $h(R) = (ab \cup bc)^* ababbc(ab \cup bc)^*$

Homomorphism as an Operation on Regular Expressions

Definition

For a regular expression R, let h(R) be the regular expression obtained by replacing each occurrence of $a \in \Sigma$ in R by the string h(a).

Example

If $R = (0 \cup 1)^* 001(0 \cup 1)^*$ and h(0) = ab and h(1) = bc then $h(R) = (ab \cup bc)^* ababbc(ab \cup bc)^*$

Formally h(R) is defined inductively as follows.

$$\begin{array}{ll} h(\emptyset) = \emptyset & h(R_1R_2) = h(R_1)h(R_2) \\ h(\epsilon) = \epsilon & h(R_1 \cup R_2) = h(R_2) \cup h(R_2) \\ h(a) = h(a) & h(R^*) = (h(R))^* \end{array}$$

Proof of Claim

Claim

For any regular expression R,
$$L(h(R)) = h(L(R))$$
.

Proof.

By induction on the number of operations in ${\it R}$

Proof of Claim

Claim

For any regular expression R,
$$L(h(R)) = h(L(R))$$
.

Proof.

By induction on the number of operations in R

• Base Cases: For $R = \epsilon$ or \emptyset , h(R) = R and h(L(R)) = L(R).

Proof of Claim

Claim

For any regular expression R,
$$L(h(R)) = h(L(R))$$
.

Proof.

By induction on the number of operations in R

• Base Cases: For $R = \epsilon$ or \emptyset , h(R) = R and h(L(R)) = L(R). For R = a, $L(R) = \{a\}$ and $h(L(R)) = \{h(a)\} = L(h(a)) = L(h(R))$. So claim holds.

Proof of Claim

Claim

For any regular expression R,
$$L(h(R)) = h(L(R))$$
.

Proof.

By induction on the number of operations in ${\it R}$

- Base Cases: For $R = \epsilon$ or \emptyset , h(R) = R and h(L(R)) = L(R). For R = a, $L(R) = \{a\}$ and $h(L(R)) = \{h(a)\} = L(h(a)) = L(h(R))$. So claim holds.
- Induction Step: For $R = R_1 \cup R_2$, observe that

Proof of Claim

Claim

For any regular expression R,
$$L(h(R)) = h(L(R))$$
.

Proof.

By induction on the number of operations in ${\it R}$

- Base Cases: For $R = \epsilon$ or \emptyset , h(R) = R and h(L(R)) = L(R). For R = a, $L(R) = \{a\}$ and $h(L(R)) = \{h(a)\} = L(h(a)) = L(h(R))$. So claim holds.
- Induction Step: For $R = R_1 \cup R_2$, observe that $h(R) = h(R_1) \cup h(R_2)$

Proof of Claim

Claim

For any regular expression R,
$$L(h(R)) = h(L(R))$$
.

Proof.

By induction on the number of operations in ${\it R}$

• Base Cases: For $R = \epsilon$ or \emptyset , h(R) = R and h(L(R)) = L(R). For R = a, $L(R) = \{a\}$ and $h(L(R)) = \{h(a)\} = L(h(a)) = L(h(R))$. So claim holds.

• Induction Step: For $R = R_1 \cup R_2$, observe that $h(R) = h(R_1) \cup h(R_2)$ and $h(L(R)) = h(L(R_1) \cup L(R_2)) = h(L(R_1)) \cup h(L(R_2)).$

Proof of Claim

Claim

For any regular expression R,
$$L(h(R)) = h(L(R))$$
.

Proof.

By induction on the number of operations in ${\it R}$

- Base Cases: For R = € or Ø, h(R) = R and h(L(R)) = L(R). For R = a, L(R) = {a} and h(L(R)) = {h(a)} = L(h(a)) = L(h(R)). So claim holds.
- Induction Step: For $R = R_1 \cup R_2$, observe that $h(R) = h(R_1) \cup h(R_2)$ and $h(L(R)) = h(L(R_1) \cup L(R_2)) = h(L(R_1)) \cup h(L(R_2))$. By induction hypothesis, $h(L(R_i)) = L(h(R_i))$ and so $h(L(R)) = L(h(R_1) \cup h(R_2))$

Proof of Claim

Claim

For any regular expression R,
$$L(h(R)) = h(L(R))$$
.

Proof.

By induction on the number of operations in ${\it R}$

- Base Cases: For R = € or Ø, h(R) = R and h(L(R)) = L(R). For R = a, L(R) = {a} and h(L(R)) = {h(a)} = L(h(a)) = L(h(R)). So claim holds.
- Induction Step: For $R = R_1 \cup R_2$, observe that $h(R) = h(R_1) \cup h(R_2)$ and $h(L(R)) = h(L(R_1) \cup L(R_2)) = h(L(R_1)) \cup h(L(R_2))$. By induction hypothesis, $h(L(R_i)) = L(h(R_i))$ and so $h(L(R)) = L(h(R_1) \cup h(R_2))$ Other cases $(R = R_1R_2$ and $R = R_1^*)$ similar.

Boolean Operators Homomorphisms Inverse Homomorphism

-

Nonregularity and Homomorphism

If L is not regular, is h(L) also not regular?

Boolean Operators Homomorphisms Inverse Homomorphism

- ∢ ≣ ▶

Nonregularity and Homomorphism

If L is not regular, is h(L) also not regular?

• No! Consider $L = \{0^n 1^n \mid n \ge 0\}$ and h(0) = a and $h(1) = \epsilon$. Then $h(L) = a^*$.

Boolean Operators Homomorphisms Inverse Homomorphism

Nonregularity and Homomorphism

If L is not regular, is h(L) also not regular?

• No! Consider $L = \{0^n 1^n \mid n \ge 0\}$ and h(0) = a and $h(1) = \epsilon$. Then $h(L) = a^*$.

Applying a homomorphism can "simplify" a non-regular language into a regular language.

Boolean Operators Homomorphisms Inverse Homomorphism

<ロ> <同> <同> < 同> < 同>

æ

Inverse Homomorphism

Agha-Viswanathan CS373

Boolean Operators Homomorphisms Inverse Homomorphism

<ロ> <同> <同> < 同> < 同>

æ

Inverse Homomorphism

Definition

Given homomorphism
$$h : \Sigma^* \to \Delta^*$$
 and $L \subseteq \Delta^*$,
 $h^{-1}(L) = \{ w \in \Sigma^* \mid h(w) \in L \}$

A.

∃ >

Inverse Homomorphism

Definition

Given homomorphism
$$h: \Sigma^* \to \Delta^*$$
 and $L \subseteq \Delta^*$,
 $h^{-1}(L) = \{ w \in \Sigma^* \mid h(w) \in L \}$

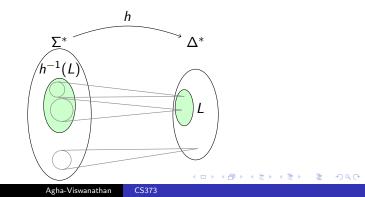
 $h^{-1}(L)$ consists of strings whose homomorphic images are in L

Inverse Homomorphism

Definition

Given homomorphism
$$h : \Sigma^* \to \Delta^*$$
 and $L \subseteq \Delta^*$,
 $h^{-1}(L) = \{ w \in \Sigma^* \mid h(w) \in L \}$

 $h^{-1}(L)$ consists of strings whose homomorphic images are in L



Boolean Operators Homomorphisms Inverse Homomorphism

글 > - < 글 >

< 1⁻→ <

э

Inverse Homomorphism

Example

Boolean Operators Homomorphisms Inverse Homomorphism

< 1⁻→ <

Inverse Homomorphism

Example

•
$$h^{-1}(1001) = \{ba\}, h^{-1}(010110) = \{aab\}$$

Boolean Operators Homomorphisms Inverse Homomorphism

< 1⁻→ <

Inverse Homomorphism

Example

•
$$h^{-1}(1001) = \{ba\}, h^{-1}(010110) = \{aab\}$$

•
$$h^{-1}(L) =$$

Boolean Operators Homomorphisms Inverse Homomorphism

< 1⁻→ <

Inverse Homomorphism

Example

•
$$h^{-1}(1001) = \{ba\}, h^{-1}(010110) = \{aab\}$$

•
$$h^{-1}(L) = (ba)^*$$

Boolean Operators Homomorphisms Inverse Homomorphism

・ 同 ト ・ ヨ ト ・ ヨ ト ・

э

Inverse Homomorphism

Example

- $h^{-1}(1001) = \{ba\}, h^{-1}(010110) = \{aab\}$
- $h^{-1}(L) = (ba)^*$
- What is $h(h^{-1}(L))$?

Inverse Homomorphism

Example

Let $\Sigma = \{a, b\}$, and $\Delta = \{0, 1\}$. Let $L = (00 \cup 1)^*$ and h(a) = 01and h(b) = 10.

- $h^{-1}(1001) = \{ba\}, h^{-1}(010110) = \{aab\}$
- $h^{-1}(L) = (ba)^*$
- What is $h(h^{-1}(L))$? $(1001)^* \subsetneq L$

Note: In general $h(h^{-1}(L)) \subseteq L \subseteq h^{-1}(h(L))$, but neither containment is necessarily an equality.

Proposition

Regular languages are closed under inverse homomorphism, i.e., if L is regular and h is a homomorphism then $h^{-1}(L)$ is regular.

Proposition

Regular languages are closed under inverse homomorphism, i.e., if L is regular and h is a homomorphism then $h^{-1}(L)$ is regular.

Proof.

We will use the representation of regular languages in terms of DFA to argue this.

Proposition

Regular languages are closed under inverse homomorphism, i.e., if L is regular and h is a homomorphism then $h^{-1}(L)$ is regular.

Proof.

We will use the representation of regular languages in terms of DFA to argue this.

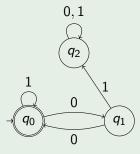
Given a DFA M recognizing L, construct an DFA M' that accepts $h^{-1}(L)$

Intuition: On input w M' will run M on h(w) and accept if M does.

Intuition: On input w M' will run M on h(w) and accept if M does.

Example

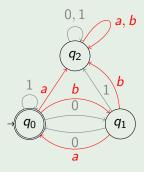
$$L = L((00 \cup 1)^*)$$
. $h(a) = 01$, $h(b) = 10$.



Intuition: On input w M' will run M on h(w) and accept if M does.

Example

 $L = L((00 \cup 1)^*)$. h(a) = 01, h(b) = 10.



Formal Construction

- Let M = (Q, Δ, δ, q₀, F) accept L ⊆ Δ* and let h : Σ* → Δ* be a homomorphism
- Define $M' = (Q', \Sigma, \delta', q'_0, F')$, where
 - *Q*′ = *Q*
 - $q'_0 = q_0$
 - F' = F, and
 - $\delta'(q, a) = \hat{\delta}_M(q, h(a)); M'$ on input a simulates M on h(a)
- M' accepts $h^{-1}(L)$

Closure under Inverse Homomorphism

Formal Construction

- Let M = (Q, Δ, δ, q₀, F) accept L ⊆ Δ* and let h : Σ* → Δ* be a homomorphism
- Define $M' = (Q', \Sigma, \delta', q'_0, F')$, where
 - *Q*′ = *Q*
 - $q'_0 = q_0$
 - F' = F, and
 - $\delta'(q, a) = \hat{\delta}_M(q, h(a)); M'$ on input a simulates M on h(a)
- M' accepts $h^{-1}(L)$
- Because $\forall w. \ \hat{\delta}_{M'}(q_0, w) = \hat{\delta}_M(q_0, h(w))$

Proving Non-Regularity Proving Regularity In a nutshell . . .

(日) (同) (日) (日) (日)

э

Proving Non-Regularity

Problem

Show that $L = \{a^n b a^n \mid n \ge 0\}$ is not regular

Proof.

Use pumping lemma!

Proving Non-Regularity Proving Regularity In a nutshell . . .

Proving Non-Regularity

Problem

Show that $L = \{a^n b a^n \mid n \ge 0\}$ is not regular

Proof.

Use pumping lemma! Alternate Proof: If we had an automaton M accepting L then we can construct an automaton accepting $K = \{0^n 1^n \mid n \ge 0\}$ ("reduction")

Proving Non-Regularity Proving Regularity In a nutshell . . .

Proving Non-Regularity

Problem

Show that $L = \{a^n b a^n \mid n \ge 0\}$ is not regular

Proof.

Use pumping lemma!

Alternate Proof: If we had an automaton M accepting L then we can construct an automaton accepting $K = \{0^n 1^n \mid n \ge 0\}$ ("reduction") More formally, we will show that by applying a sequence of "regularity preserving" operations to L we can get K.

Proving Non-Regularity Proving Regularity In a nutshell . . .

.≣ →

Proving Non-Regularity

Problem

```
Show that L = \{a^n b a^n \mid n \ge 0\} is not regular
```

Proof.

Use pumping lemma!

```
Alternate Proof: If we had an automaton M accepting L then we can construct an automaton accepting K = \{0^n 1^n \mid n \ge 0\} ("reduction")
More formally, we will show that by applying a sequence of "regularity preserving" operations to L we can get K. Then, since K is not regular, L cannot be regular.
```

Proving Non-Regularity Proving Regularity In a nutshell ...

< ∃⇒

Proving Non-Regularity

Using Closure Properties

Proof (contd).

To show that by applying a sequence of "regularity preserving" operations to $L = \{a^n b a^n \mid n \ge 0\}$ we can get $K = \{0^n 1^n \mid n \ge 0\}$.

Proving Non-Regularity Proving Regularity In a nutshell ...

→ < ∃→

Proving Non-Regularity

Using Closure Properties

Proof (contd).

To show that by applying a sequence of "regularity preserving" operations to $L = \{a^n b a^n \mid n \ge 0\}$ we can get $K = \{0^n 1^n \mid n \ge 0\}$.

Consider homomorphism h₁: {a, b, c}* → {a, b, c}* defined as h₁(a) = a, h₁(b) = b, h₁(c) = a.
L₁ = h₁⁻¹(L) = {(a ∪ c)ⁿb(a ∪ c)ⁿ | n ≥ 0}

Proving Non-Regularity Proving Regularity In a nutshell . . .

∃ ► < ∃ ►</p>

Proving Non-Regularity

Using Closure Properties

Proof (contd).

To show that by applying a sequence of "regularity preserving" operations to $L = \{a^n b a^n \mid n \ge 0\}$ we can get $K = \{0^n 1^n \mid n \ge 0\}$.

- Consider homomorphism $h_1 : \{a, b, c\}^* \to \{a, b, c\}^*$ defined as $h_1(a) = a, h_1(b) = b, h_1(c) = a.$ • $L_1 = h_1^{-1}(L) = \{(a \cup c)^n b (a \cup c)^n \mid n \ge 0\}$
- Let $L_2 = L_1 \cap L(a^*bc^*) = \{a^nbc^n \mid n \ge 0\}$

Proving Non-Regularity Proving Regularity In a nutshell ...

∃ → < ∃ →</p>

Proving Non-Regularity

Using Closure Properties

Proof (contd).

To show that by applying a sequence of "regularity preserving" operations to $L = \{a^n b a^n \mid n \ge 0\}$ we can get $K = \{0^n 1^n \mid n \ge 0\}$.

- Consider homomorphism h₁: {a, b, c}* → {a, b, c}* defined as h₁(a) = a, h₁(b) = b, h₁(c) = a.
 L₁ = h₁⁻¹(L) = {(a ∪ c)ⁿb(a ∪ c)ⁿ | n ≥ 0}
- Let $L_2 = L_1 \cap L(a^*bc^*) = \{a^nbc^n \mid n \ge 0\}$
- Homomorphism h₂: {a, b, c}* → {0, 1}* is defined as h₂(a) = 0, h₂(b) = ε, and h₂(c) = 1.
 L₃ = h₂(L₂) = {0ⁿ1ⁿ | n ≥ 0} = K

Proving Non-Regularity

Using Closure Properties

Proof (contd).

To show that by applying a sequence of "regularity preserving" operations to $L = \{a^n b a^n \mid n \ge 0\}$ we can get $K = \{0^n 1^n \mid n \ge 0\}$.

- Consider homomorphism h₁ : {a, b, c}* → {a, b, c}* defined as h₁(a) = a, h₁(b) = b, h₁(c) = a.
 L₁ = h₁⁻¹(L) = {(a ∪ c)ⁿb(a ∪ c)ⁿ | n ≥ 0}
- Let $L_2 = L_1 \cap L(a^*bc^*) = \{a^nbc^n \mid n \ge 0\}$
- Homomorphism h₂ : {a, b, c}* → {0,1}* is defined as h₂(a) = 0, h₂(b) = ε, and h₂(c) = 1.
 L₃ = h₂(L₂) = {0ⁿ1ⁿ | n ≥ 0} = K
- Now if L is regular then so are L₁, L₂, L₃, and K. But K is not regular, and so L is not regular.

< ロ > < 同 > < 回 > < 回 >

Proving Non-Regularity Proving Regularity In a nutshell ...

Proving Regularity

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA. Consider

 $L = \{w | M \text{ accepts } w \text{ and } M \text{ visits every state at least once on input } w\}$

Is *L* regular? Note that *M* does not necessarily accept all strings in *L*; $L \subseteq L(M)$.

Proving Non-Regularity Proving Regularity In a nutshell ...

Proving Regularity

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA. Consider

 $L = \{w | M \text{ accepts } w \text{ and } M \text{ visits every state at least once on input } w\}$

Is *L* regular?

Note that M does not necessarily accept all strings in L; $L \subseteq L(M)$. By applying a series of regularity preserving operations to L(M) we will construct L, thus showing that L is regular

Proving Non-Regularity Proving Regularity In a nutshell ...

Computations: Valid and Invalid

 Consider an alphabet Δ consisting of [paq] where p, q ∈ Q, a ∈ Σ and δ(p, a) = q. So symbols of Δ represent transitions of M.

Proving Non-Regularity Proving Regularity In a nutshell ...

- Consider an alphabet Δ consisting of [paq] where p, q ∈ Q, a ∈ Σ and δ(p, a) = q. So symbols of Δ represent transitions of M.
- Let $h: \Delta \to \Sigma^*$ be a homomorphism such that h([paq]) = a

- Consider an alphabet Δ consisting of [paq] where p, q ∈ Q, a ∈ Σ and δ(p, a) = q. So symbols of Δ represent transitions of M.
- Let $h:\Delta o \Sigma^*$ be a homomorphism such that h([paq]) = a
- $L_1 = h^{-1}(L(M))$; L_1 contains strings of L(M) where each symbol is associated with a pair of states that represent some transition

- Consider an alphabet Δ consisting of [paq] where p, q ∈ Q, a ∈ Σ and δ(p, a) = q. So symbols of Δ represent transitions of M.
- Let $h:\Delta o \Sigma^*$ be a homomorphism such that h([paq]) = a
- $L_1 = h^{-1}(L(M))$; L_1 contains strings of L(M) where each symbol is associated with a pair of states that represent some transition
 - Some strings of L_1 represent valid computations of M. But there are also other strings in L_1 which do not correspond to valid computations of M

- Consider an alphabet Δ consisting of [paq] where $p, q \in Q$, $a \in \Sigma$ and $\delta(p, a) = q$. So symbols of Δ represent transitions of M_{\cdot}
- Let $h: \Delta \to \Sigma^*$ be a homomorphism such that h([pag]) = a
- $L_1 = h^{-1}(L(M))$; L_1 contains strings of L(M) where each symbol is associated with a pair of states that represent some transition
 - Some strings of L_1 represent valid computations of M. But there are also other strings in L_1 which do not correspond to valid computations of M
- We will first remove all the strings from L_1 that correspond to invalid computations, and then remove those that do not visit every state at least once.

Only Valid Computations

Strings of Δ^* that represent valid computations of M satisfy the following conditions

Only Valid Computations

Strings of Δ^* that represent valid computations of M satisfy the following conditions

• The first state in the first symbol must be q_0

Only Valid Computations

Strings of Δ^* that represent valid computations of M satisfy the following conditions

• The first state in the first symbol must be q_0

 $L_2 = L_1 \cap (([q_0a_1q_1] \cup [q_0a_2q_2] \cup \cdots \cup [q_0a_kq_k])\Delta^*)$

 $([q_0a_1q_1], \dots [q_0a_kq_k]$ are all the transitions out of q_0 in M)

Only Valid Computations

Strings of Δ^* that represent valid computations of M satisfy the following conditions

• The first state in the first symbol must be q_0

 $L_2 = L_1 \cap (([q_0a_1q_1] \cup [q_0a_2q_2] \cup \cdots \cup [q_0a_kq_k])\Delta^*)$

 $([q_0a_1q_1], \dots [q_0a_kq_k]$ are all the transitions out of q_0 in M)

• The first state in one symbol must equal the second state in previous symbol

Only Valid Computations

Strings of Δ^* that represent valid computations of M satisfy the following conditions

• The first state in the first symbol must be q_0

$$L_2 = L_1 \cap (([q_0a_1q_1] \cup [q_0a_2q_2] \cup \cdots \cup [q_0a_kq_k])\Delta^*)$$

 $([q_0a_1q_1], \dots [q_0a_kq_k]$ are all the transitions out of q_0 in M)

• The first state in one symbol must equal the second state in previous symbol

$$L_3 = L_2 \setminus (\Delta^*(\sum_{q \neq r} [paq][rbs])\Delta^*)$$

Remove "invalid" sequences from L_2 .

Only Valid Computations

Strings of Δ^* that represent valid computations of M satisfy the following conditions

• The first state in the first symbol must be q_0

$$L_2 = L_1 \cap (([q_0 a_1 q_1] \cup [q_0 a_2 q_2] \cup \cdots \cup [q_0 a_k q_k])\Delta^*)$$

 $([q_0a_1q_1], \dots [q_0a_kq_k])$ are all the transitions out of q_0 in M

• The first state in one symbol must equal the second state in previous symbol

$$L_3 = L_2 \setminus (\Delta^*(\sum_{q \neq r} [paq][rbs])\Delta^*))$$

Remove "invalid" sequences from L_2 . Difference of two regular languages is regular (why?). So L_3 is regular.

Only Valid Computations

Strings of Δ^* that represent valid computations of M satisfy the following conditions

• The first state in the first symbol must be q_0

$$L_2 = L_1 \cap (([q_0 a_1 q_1] \cup [q_0 a_2 q_2] \cup \cdots \cup [q_0 a_k q_k])\Delta^*)$$

 $([q_0a_1q_1], \dots [q_0a_kq_k]$ are all the transitions out of q_0 in M)

• The first state in one symbol must equal the second state in previous symbol

$$L_3 = L_2 \setminus (\Delta^*(\sum_{q \neq r} [paq][rbs])\Delta^*))$$

Remove "invalid" sequences from L_2 . Difference of two regular languages is regular (why?). So L_3 is regular.

• The second state of the last symbol must be in F.

Only Valid Computations

Strings of Δ^* that represent valid computations of M satisfy the following conditions

• The first state in the first symbol must be q_0

$$L_2 = L_1 \cap (([q_0 a_1 q_1] \cup [q_0 a_2 q_2] \cup \cdots \cup [q_0 a_k q_k])\Delta^*)$$

 $([q_0a_1q_1], \dots [q_0a_kq_k]$ are all the transitions out of q_0 in M)

• The first state in one symbol must equal the second state in previous symbol

$$L_3 = L_2 \setminus (\Delta^*(\sum_{q \neq r} [paq][rbs])\Delta^*))$$

Remove "invalid" sequences from L_2 . Difference of two regular languages is regular (why?). So L_3 is regular.

• The second state of the last symbol must be in *F*. Holds trivially because *L*₃ only contains strings accepted by *M*₌

Proving Non-Regularity Proving Regularity In a nutshell ...

Example continued

So far, regular language L_3 = set of strings in Δ^* that represent valid computations of M.

Example continued

So far, regular language L_3 = set of strings in Δ^* that represent valid computations of M.

• Let $E_q \subseteq \Delta$ be the set of symbols where q appears neither as the first nor the second state. Then E_q^* is the set of strings where q never occurs.

Example continued

So far, regular language L_3 = set of strings in Δ^* that represent valid computations of M.

- Let $E_q \subseteq \Delta$ be the set of symbols where q appears neither as the first nor the second state. Then E_q^* is the set of strings where q never occurs.
- We remove from L_3 those strings where some $q \in Q$ never occurs

$$L_4 = L_3 \setminus (\bigcup_{q \in Q} E_q^*)$$

Example continued

So far, regular language L_3 = set of strings in Δ^* that represent valid computations of M.

- Let $E_q \subseteq \Delta$ be the set of symbols where q appears neither as the first nor the second state. Then E_q^* is the set of strings where q never occurs.
- We remove from L_3 those strings where some $q \in Q$ never occurs

$$L_4 = L_3 \setminus (\bigcup_{q \in Q} E_q^*)$$

• Finally we discard the state components in L_4

$$L=h(L_4)$$

Example continued

So far, regular language L_3 = set of strings in Δ^* that represent valid computations of M.

- Let $E_q \subseteq \Delta$ be the set of symbols where q appears neither as the first nor the second state. Then E_q^* is the set of strings where q never occurs.
- We remove from L_3 those strings where some $q \in Q$ never occurs

$$L_4 = L_3 \setminus (\bigcup_{q \in Q} E_q^*)$$

• Finally we discard the state components in L_4

$$L = h(L_4)$$

• Hence, L is regular.

Proving Non-Regularity Proving Regularity In a nutshell ...

< 1 →

글 🖌 🖌 글 🕨

э

Proving Regularity and Non-Regularity

Showing that L is not regular

Proving Non-Regularity Proving Regularity In a nutshell ...

글 > - < 글 >

Proving Regularity and Non-Regularity

Showing that L is not regular

• Use the pumping lemma

Showing that L is not regular

- Use the pumping lemma
- Or, show that from *L* you can obtain a known non-regular language through regularity preserving operations.

Showing that L is not regular

- Use the pumping lemma
- Or, show that from *L* you can obtain a known non-regular language through regularity preserving operations.
- Note: Non-regular languages are not closed under the operations discussed.

Showing that L is not regular

- Use the pumping lemma
- Or, show that from *L* you can obtain a known non-regular language through regularity preserving operations.
- Note: Non-regular languages are not closed under the operations discussed.

Showing that L is regular

Showing that L is not regular

- Use the pumping lemma
- Or, show that from *L* you can obtain a known non-regular language through regularity preserving operations.
- Note: Non-regular languages are not closed under the operations discussed.

Showing that L is regular

• Construct a DFA or NFA or regular expression recognizing L

Showing that L is not regular

- Use the pumping lemma
- Or, show that from *L* you can obtain a known non-regular language through regularity preserving operations.
- Note: Non-regular languages are not closed under the operations discussed.

Showing that L is regular

- Construct a DFA or NFA or regular expression recognizing L
- Or, show that *L* can be obtained from known regular languages *L*₁, *L*₂, ... *L_k* through regularity preserving operations

Showing that L is not regular

- Use the pumping lemma
- Or, show that from *L* you can obtain a known non-regular language through regularity preserving operations.
- Note: Non-regular languages are not closed under the operations discussed.

Showing that L is regular

- Construct a DFA or NFA or regular expression recognizing L
- Or, show that *L* can be obtained from known regular languages *L*₁, *L*₂, ... *L_k* through regularity preserving operations
- Note: Do not use pumping lemma to prove regularity!!

A list of Regularity-Preserving Operations

Regular languages are closed under the following operations.

- Regular Expression operations
- Boolean operations: union, intersection, complement
- Homomorphism
- Inverse Homomorphism

(And several other operations...)