Solutions for Problem Set 7 CS 373: Theory of Computation

Assigned: October 19, 2010 Due on: October 26, 2010 at 10am

Homework Problems

Problem 1. [Category: Proof] Solve problem 3.19. Hint: Use the result of problem 3.18, which was solved in discussion 9.

Solution: Let L be an infinite recursively enumerable language. Since L is recursively enumerable, L has an enumerator M such that $E(M)=L$. Problem 3.18 (and the discussion section problem) provide a characterization of decidable languages in terms of enumeration: L_{1} is decidable iff there is an enumerator M_{1} that enumerates the strings of L_{1} in lexicographic order. We will use this result to identify an infinite, decidable subset of L.

Consider the following enumerator M_{1}

```
last-string \(=\perp\)
Run \(M\)
Whenever \(M\) outputs a string (say) \(w\)
    if \(((\) last-string \(=\perp)\) or \((w>\) last-string \()\) then
        output \(w\)
        last-string \(=w\)
```

In the above algorithm, the check " $w>$ last-string" means that w is after last-string in the lexicographic ordering. Observe that, by construction, any string output by M_{1} is in L (as it must have been first output by M which enumerates L), and M_{1} outputs strings in lexicographic ordering (because we check that the new string to be output is after the last string that M_{1} output). Thus, $E\left(M_{1}\right) \subseteq L$ and $E\left(M_{1}\right)$ is decidable (by problem 3.18).

All that is left to show is that $E\left(M_{1}\right)$ is infinite. Suppose (for contradiction) $E\left(M_{1}\right)$ is finite. Let last-string be the last string output by M_{1}. This means that last-string is the largest (according to the lexicographic ordering) of strings output by M_{1}, and is also the largest string output by M. That means L only consists of strings that are lexicographically smaller than last-string. But then L is finite, which gives contradicts the fact that L is infinite.

Problem 2. [Category: Proof] Solve problem 4.17.
Solution: We need to prove the following two statements.

1. If D is decidable then $C=\{x \mid \exists y .\langle x, y\rangle \in D\}$ is recursively enumerable.
2. If C is recursively enumerable then there is a decidable language D such that $C=\{x \mid \exists y .\langle x, y\rangle \in D\}$.

We will prove these in order.

Suppose D is a decidable language, with M_{D} a TM that always halts and recognizes D. Let $C=$ $\{x \mid \exists y .\langle x, y\rangle \in D\}$. Consider the following TM M_{C}.

On input x
for any string y do
Run M_{D} on $\langle x, y\rangle$
If M_{D} accepts then accept and halt

Observe that if M_{C} accepts x then there is some y such that M_{D} accepts $\langle x, y\rangle$, and so $L\left(M_{C}\right) \subseteq C$. On the other hand, suppose x is such that for some $y,\langle x, y\rangle \in D$, then M_{C} will accept x. Thus, $L\left(M_{C}\right)=C$. Hence, C is recursively enumerable.

Conversely, suppose C is recursively enumerable and M_{C} is a TM that recognizes C. Consider D defined as follows.

$$
D=\left\{\langle x, y\rangle \mid M_{C} \text { accepts } x \text { within }|y| \text { steps }\right\}
$$

Observe that $C=\{x \mid \exists y .\langle x, y\rangle \in D\}$ because $x \in C$ if and only if there some k such that M_{C} accepts x within k steps. Moreover, D is decided by the following Turing machine M_{D}

```
On input }\langlex,y
    Run }\mp@subsup{M}{C}{}\mathrm{ on }x\mathrm{ for |y| steps
    If M}\mp@subsup{M}{C}{}\mathrm{ accepts }x\mathrm{ within |y| steps then
        accept }\langlex,y
    else reject }\langlex,y
```

Observe that M_{D} halts on all inputs because all of its statements halt.

Problem 3. [Category: Proof] Consider $\operatorname{Inf}=\{M \mid M$ is a TM and $L(M)$ is infinite $\}$. Using reductions, prove that Inf is not recursively enumerable (i.e., Turing recognizable). Hint: Reduce a known non-recognizable language like $\overline{A_{\mathrm{TM}}}$ or L_{d} to Inf.

Solution: Observe that Inf is undecidable by Rice's theorem. However, that does not establish anything about whether Inf is recursively enumerable. We will solve the problem by reducing $\overline{A_{\mathrm{TM}}}$ to Inf as follows.

Given input $\langle M, w\rangle$ let $f(\langle M, w\rangle)$ be the following program:

On input x
Run M on w for $|x|$ steps
If M accepts w within $|x|$ steps then
reject x
else accept x

Observe that if M does not accept w (i.e., $\langle M, w\rangle \in \overline{A_{\mathrm{TM}}}$) then since M will not accept w no matter how long we run M, all inputs will be accepted. Hence $L(f(\langle M, w\rangle))=\Sigma^{*}$ and so $f(\langle M, w\rangle) \in \operatorname{Inf}$. On the other hand, if M accepts w (or $\langle M, w\rangle \notin \overline{A_{\mathrm{TM}}}$) then M accepts w in k steps, for some k. Now, on any string x of length $\geq k, f(\langle M, w\rangle)$ will reject, and on any input x of length $<k, f(\langle M, w\rangle)$ will accept. Thus,

$$
L(f(\langle M, w\rangle))=\bigcup_{i<k} \Sigma^{i}
$$

which is a finite set. Thus, $f(\langle M, w\rangle) \notin \operatorname{Inf}$. Hence, $\overline{A_{\mathrm{TM}}} \leq_{m} \operatorname{Inf}$ and since $\overline{A_{\mathrm{TM}}}$ is not recursively enumerable, Inf is not recursively enumerable.

