CS 373 Fall 2010
Quiz 4 Solutions

Lecture 1 - Mahesh

1. C. For any string \(w \), either \(w \) is in \(A \), \(w \) is in \(B \), or \(w \) is in neither (and it cannot be in both). The machines that decide \(A \) and \(B \) simulate the recognizers for \(A \), \(B \), and \(A \cup B \) in parallel on any input \(w \). One of them will accept in finite time, which identifies where \(w \) is.

2. C. Say \(L' = A_{TM} \). (a) is incorrect if \(L = \Sigma^* \times \Sigma^* \), and (b) is incorrect if \(L = \emptyset \). We can reduce \(L \) as follows: on input \(w \), we actually compute if \(w \in L \) (which can be done in finite time since \(L \) is decidable). If yes, \(f(w) = 0011 \). Else \(f(w) = 011 \). Thus \(w \in L \) iff \(f(w) \in L_{01n} \).

3. C. The reduction tells us that there is a function \(f \) such that \(w \in A \) iff \(f(w) \in B \). Thus \(w \in \tilde{A} \) iff \(w \notin A \) iff \(f(w) \notin B \) iff \(w \in \tilde{B} \) for the same function \(f \).

4. C. Since \(L_d \) is not RE, we learn this about \(L \).

5. C. (c) is a feature of a machine, not a language. Notice that (b) is actually a feature of a language, since a TM with an odd number of states can be in that set.

6. B. We can build a recognizer for \(L \) as follows: on input \(M \), dovetail all possible strings until 312929 are accepted. There is no decider though, since we cannot tell which strings are not in \(L(M) \) without running \(M \) on all of them.

Lecture 2 - Gul

1. C. For any string \(w \), either \(w \) is in \(A \), \(w \) is in \(B \), or \(w \) is in both (and it cannot be in neither). The machines that decide \(A \) and \(B \) work as follows: on input \(w \), put \(w \) in the \((A \cap B) \cup (A \cap B)\) decider. If it rejects, \(w \) is in \(A \cap B \) so accept \(w \). If it accepts, the \(A \) and \(B \) recognizers can be run in parallel to find out which set \(w \) is in.

2. C. Say \(L' = L_{d} \). (a) is incorrect if \(L = \Sigma^* \), and (b) is incorrect if \(L = \emptyset \). We can reduce \(L \) as follows: on input \(w \), pass \(f(w) = \langle M_L, w \rangle \) to a machine for \(A_{TM} \), where \(M_L \) is a machine for \(L \). Thus \(w \in L \) iff \(\langle M_L, w \rangle \in A_{TM} \).

3. C. The reduction tells us that there is a function \(f \) such that \(w \in A \) iff \(f(w) \in B \). Thus \(w \in \tilde{A} \) iff \(w \notin A \) iff \(f(w) \notin B \) iff \(w \in \tilde{B} \) for the same function \(f \).

4. B. Since \(A_{TM} \) is not decidable, we learn that \(L \) is also not decidable. We do not know whether \(L \) is recognizable or not.

5. A. This is a feature of \(M \)'s language, where the other two are features of the machine.
6. \bar{L} is RE, so option (b) is impossible. Intuitively, we can see there is no machine for L. On input M, such a machine would have to check all strings to see that only 312929 are accepted by M. Thus L is not RE, though its complement is.