1. Suppose \(A \) and \(B \) are recursively enumerable languages such that \(A \cup B = \Sigma^* \). Further, suppose \((A \cap \overline{B}) \cup (A \cap B)\) is decidable. What can you say about \(A \) and \(B \)?

(A) It is possible that neither \(A \) nor \(B \) is decidable.
(B) At least one among \(A \) and \(B \) is decidable.
(C) Both \(A \) and \(B \) are decidable.

2. Let \(L \) be recursively enumerable. Which of the following is true about \(L \)?

(A) If \(L' \subseteq L \) then \(L' \) is recursively enumerable.
(B) If \(L \subseteq L' \) then \(L' \) is recursively enumerable.
(C) \(L \leq_m A_{TM} \), where \(A_{TM} = \{\langle M, w \rangle \mid w \in L(M)\} \)

3. Let \(A \) and \(B \) be any languages such that \(A \leq_m B \). Under what conditions is it the case that \(\overline{A} \leq_m \overline{B} \)?

(A) Only when both \(A \) and \(B \) are decidable.
(B) Only when both \(A \) and \(B \) are recursively enumerable.
(C) Always.

4. Recall that \(A_{TM} = \{\langle M, w \rangle \mid w \in L(M)\} \). Suppose \(A_{TM} \leq_m L \). What can you say about \(L \)?

(A) \(L \) is not decidable but is recursively enumerable.
(B) \(L \) is not decidable but may or may not be recursively enumerable.
(C) \(L \) is not recursively enumerable.
5. Which of the following is a property of recursively enumerable languages?
 - \{M \mid M \text{ accepts 312929 strings}\}.
 - \{M \mid M \text{ has 312929 states}\}.
 - \{M \mid M \text{ has 312929 symbols in tape alphabet}\}.

6. Let \(L = \{M \mid M \text{ is a TM that accepts at most 312929 strings}\} \). Observe that \(L \) is recursively enumerable. What can you say about \(L \)?
 (A) \(L \) is decidable.
 (B) \(L \) is not decidable but is recursively enumerable.
 (C) \(L \) is not recursively enumerable.