Quiz 3
CS 373: Theory of Computation

Date: October 19, 2010. Lecture Section AL2. Time limit: 15 minutes.

<table>
<thead>
<tr>
<th>Name</th>
<th>netid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Discussion</th>
<th>Tu 2-2:50</th>
<th>Tu 3-3:50</th>
<th>Tu 4-4:50</th>
<th>W 4-4:50</th>
<th>W 5-5:50</th>
</tr>
</thead>
</table>

Pick the correct alternative from among the choices (A), (B), and (C) provided for each question below. Each question is worth 1 point.

1. Consider the following Turing Machine: $M = (\{q_0, q_1, q_2, q_{\text{acc}}, q_{\text{rej}}\}, \{0, 1\}, \{0, 1, \sqcup\}, \delta, q_0, q_{\text{acc}}, q_{\text{rej}})$, where

$$\delta(q_0, 0) = (q_1, 1, \text{R}) \quad \delta(q_1, 1) = (q_2, 1, \text{L})$$

$$\delta(q_2, 1) = (q_1, 1, \text{R}) \quad \delta(q_1, \sqcup) = (q_{\text{acc}}, \sqcup, \text{R})$$

As always, we assume for cases not mentioned above, $\delta(q, a) = (q_{\text{rej}}, \sqcup, \text{R})$. Suppose the current configuration is $1q_00$. The next configuration is

(A) $1q_11$
(B) $11q_1\sqcup$
(C) $10q_11$

2. Consider the following Turing Machine: $M = (\{q_0, q_1, q_2, q_{\text{acc}}, q_{\text{rej}}\}, \{0, 1\}, \{0, 1, \sqcup\}, \delta, q_0, q_{\text{acc}}, q_{\text{rej}})$, where

$$\delta(q_0, 0) = (q_1, 1, \text{R}) \quad \delta(q_1, 1) = (q_2, 1, \text{L})$$

$$\delta(q_2, 1) = (q_1, 1, \text{R}) \quad \delta(q_1, \sqcup) = (q_{\text{acc}}, \sqcup, \text{R})$$

As always, we assume for cases not mentioned above, $\delta(q, a) = (q_{\text{rej}}, \sqcup, \text{R})$. What can we say about the Turing machine M?

(A) M halts on all inputs
(B) M never halts on some inputs
(C) M does not halt on any input

3. How many Turing Machines are there with only three states q_0, q_{acc} and q_{rej}, with $\Sigma = \{0, 1\}$ and $\Gamma = \{0, 1, \sqcup\}$?

(A) 3
(B) 18^3
(C) infinitely many
4. Suppose M_1 and M_2 are two TMs such that $L(M_1) \subseteq L(M_2)$. Then

(A) on every input on which M_1 does not halt, M_2 does not halt.
(B) on every input on which M_1 halts, M_2 halts too.
(C) on every input which M_1 accepts, M_2 halts.

5. If L_1 and L_2 are Turing-recognizable then $L_1 \cup L_2$ is

(A) Decidable
(B) Turing-recognizable but may not be decidable
(C) May not be Turing-recognizable

6. If L is decidable, then

(A) L and \overline{L} must be Turing-recognizable.
(B) L must be Turing-recognizable, but \overline{L} need not be.
(C) exactly one of L and \overline{L} is Turing-recognizable.