Recap

* (Ch 13) Regression

* The regression problem
* Training a linear regression model using least squares
* Evaluating a model using the R-squared metric

Today

* (Ch 13) Regression

* QOutliers, overfitting and regularization
* Nearest neighbors regression



The regression problem

Weight vs length in perch from Lake Laengelmavesi

* Given a set of feature vectors X; where
each has a numerical label y;, we want to
train a model that can map unlabeled o
vectors to numerical values
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* We can think of regression as fitting a line
(or curve or hyperplane, etc.) to data
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* Regression is like classification except that
the prediction target is a number, not a 10 20 30 40
class label (and that changes everything) Length (cm)
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Training a linear model [s.;

f

* Given a training dataset {(x,¥)}, we want to fit a model y = x"B + ¢
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* To train the model, we must choose 8 that makes e small in the
matrix equation

y=Xp+e



Training using least squares

* In the least squares method, we aim to minimize ||e]|?
lell* = [ly — XBII* = (y — XB)' (y — XB)

* Differentiating and setting to zero (and skipping some matrix calculus)
gives

XTXB—-X'y=0
e If XT X is invertible, the least squares estimate of the coefficients is

B=(x"X) XTy



Training a linear model with constant offset
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Dealing with nonlinear relationships

Frequency of word usage in Shakespeare

A linear model will not o
produce a good fit if the
dependent variable is
not linear in the
explanatory variables
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Transforming variables to find a linear fit

Frequency of word usage in Shakespeare, log-log

In this example, taking natural log 4 o <
of both variables gives a linear fit
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Transforming just the explanatory variable

Weight vs length*3 in Weight predicted from length®3 in
perch from Lake Laengelmavesi perch from Lake Laengelmavesi
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Transforming just the dependent variable

Weight*(1/3) vs length in Weight*{1/3) predicted from length in
perch from Lake Laengelmavesi perch from Lake Laengelmavesi
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Problems with the data

* Linear regression model parameters are very sensitive to outliers
* It is usually not obvious how to transform the explanatory variables

* Both of these problems can lead to overfitting the model



Effect of outliers: synthetic data example
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Effect of outliers: body fat example

Weight against height, all points Weight against height, 4 outliers removed
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Too many transformed explanatory variables

Weight vs length in perch from Lake Weight vs length in perch from Lake
Laengelmavesi, three models. Laengelmavesi, all powers up to 10.
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Avoiding overfitting

e Method 1: validation

* Use a validation set to choose the transformed explanatory variables
* But the number of combinations is exponential in the number of variables

* Method 2: regularization
* Impose a penalty on complexity of the model during the training
* Less complex models have smaller model coefficients in the vector 3

* We can use validation to select the regularization parameter A



Regularizing the cost function
* In ordinary least squares, the cost function was ||e]|?
lell* = lly — XBII* = (y — XB)" (y — XB)

* In regularized least squares, we add a complexity penalty weighted by A

ly — XBII* + AlIBlI* = (y—XB) ' (y — XB) + AB"B



Training using regularized least squares

* Differentiating the cost function and setting to zero (and skipping some
matrix calculus) gives

(XTX+A)B—-XTy=0

. (XTX + /11) is always invertible, so the least squares estimate of the

coefficients is



Choosing lambda using cross-validation tools

Weight vs length in perch from Lake Laengelmavesi,

all powers up to 10, regularized
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

- - oo
5 = /

: Length: Coefficient of power - /

H : - I [#]s 4
& | $ 1: 872

w,..»""""" 2: 0.12

1000

Lt 3: 2e-3
it S | 4 4e-5

N it &0 5: 7e-7
It 6 1e-8

7: 18-10

Te-13
~3a-14
10:-28-15

600
|

Mean-Squared Error
Weight (gr)

4 6 8 10 12 ! ! ! '

10 20 30 40
log(Lambda) Length (cm)



Nearest neighbors regression

* A linear model is not the only
solution to regression

 When there is plenty of data,
k-nearest neighbors
regression can be used

* k = 1 (shown on the right) is
uncommon
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k-nearest neighbors with weights

The goal is to predict y§ from X, from a training dataset {(X, y)}

* Let {(x-, yj)} be the set of k items such that x; are nearest X,

* Predict
P = 2 WiY;
P =
Z,- Wj

where w; are weights that drop off as x; get further from x,



5-nearest neighbors with different weightings

Nearest Neighbor Regression, 40 pts, k=5
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* Exponential weighting
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