Recap

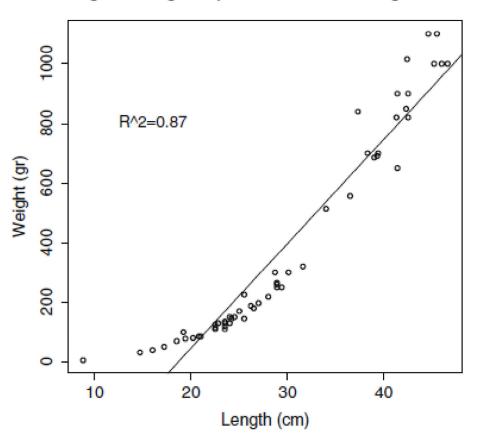
- (Ch 13) Regression
 - The regression problem
 - Training a linear regression model using least squares
 - Evaluating a model using the R-squared metric

Today

- (Ch 13) Regression
 - Outliers, overfitting and regularization
 - Nearest neighbors regression

The regression problem

- Given a set of **feature vectors** \mathbf{x}_i where each has a **numerical label** y_i , we want to train a model that can map unlabeled vectors to numerical values
- We can think of regression as fitting a line (or curve or hyperplane, etc.) to data
- Regression is like classification except that the prediction target is a number, not a class label (and that changes everything)



Training a linear model

• Given a training dataset $\{(\mathbf{x}, y)\}$, we want to fit a model $y = \mathbf{x}^T \mathbf{\beta} + \xi$

• Define
$$\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix}$$
 and $X = \begin{bmatrix} \mathbf{x}_1^T \\ \vdots \\ \mathbf{x}_N^T \end{bmatrix}$ and $\mathbf{e} = \begin{bmatrix} \xi_1 \\ \vdots \\ \xi_N \end{bmatrix}$

• To train the model, we must choose ${\pmb \beta}$ that makes ${\pmb e}$ small in the matrix equation

$$y = X\beta + e$$

Training using least squares

• In the least squares method, we aim to minimize $\|\mathbf{e}\|^2$

$$\|\mathbf{e}\|^2 = \|\mathbf{y} - X\mathbf{\beta}\|^2 = (\mathbf{y} - X\mathbf{\beta})^T (\mathbf{y} - X\mathbf{\beta})$$

 Differentiating and setting to zero (and skipping some matrix calculus) gives

$$X^T X \mathbf{\beta} - X^T \mathbf{y} = \mathbf{0}$$

• If X^TX is invertible, the least squares estimate of the coefficients is

$$\widehat{\boldsymbol{\beta}} = \left(X^T X \right)^{-1} X^T \mathbf{y}$$

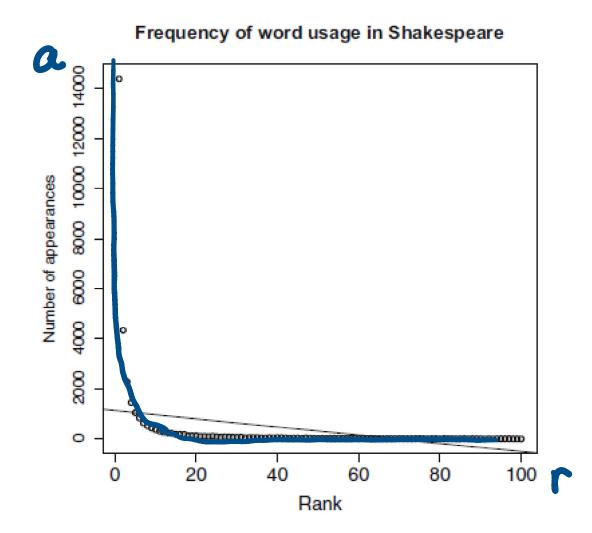
Training a linear model with constant offset Model:
$$y = \beta_0 + \mathbf{x}^{(1)}\beta_1 + \mathbf{x}^{(2)}\beta_2 + \xi = \mathbf{x}^T\mathbf{\beta} + \xi$$

Training data

	1	$\mathbf{x}^{(1)}$	$\mathbf{x}^{(2)}$	у	
	•	1	3	0	
X		2	3	2	7
		3	6	5	

Dealing with nonlinear relationships

A linear model will not produce a good fit if the dependent variable is **not** linear in the explanatory variables



Transforming variables to find a linear fit

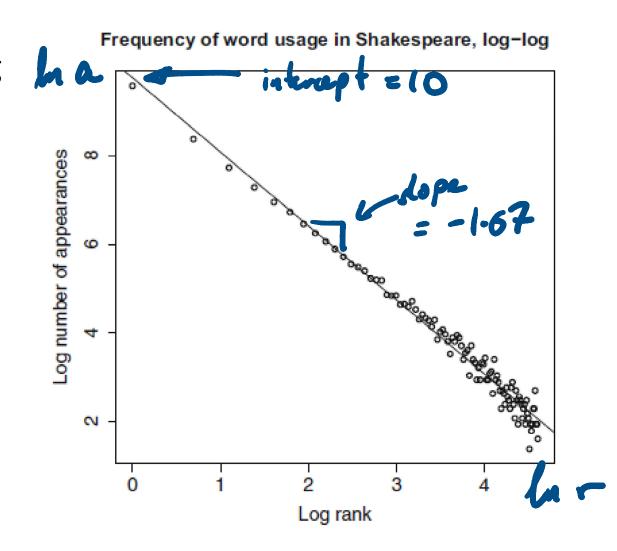
In this example, taking natural log of both variables gives a linear fit

$$La = -1.67 La + 10$$

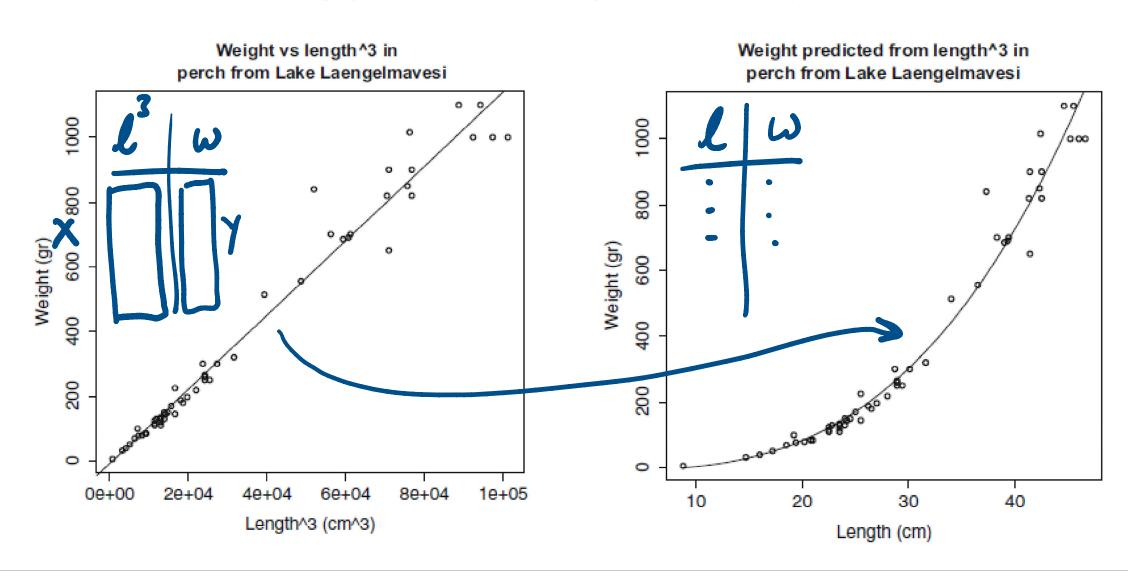
$$La = -1.67 + 10$$

$$A = r^{-1.67} (e^{10})$$

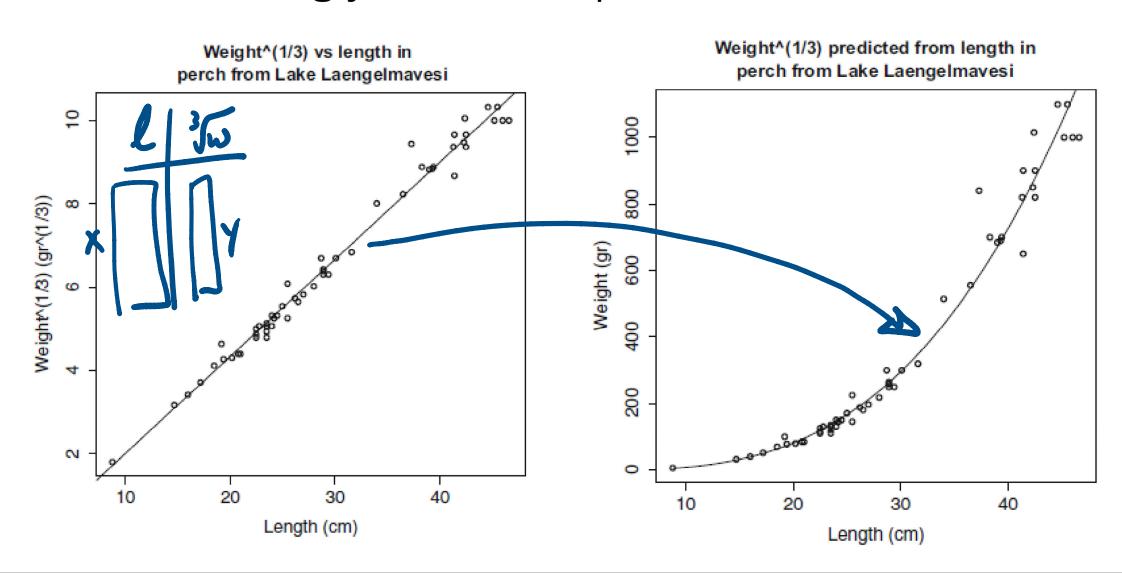
$$A = e^{10} (\frac{1}{7})^{1.67}$$
consistent with $2ipf's$ Land



Transforming just the explanatory variable



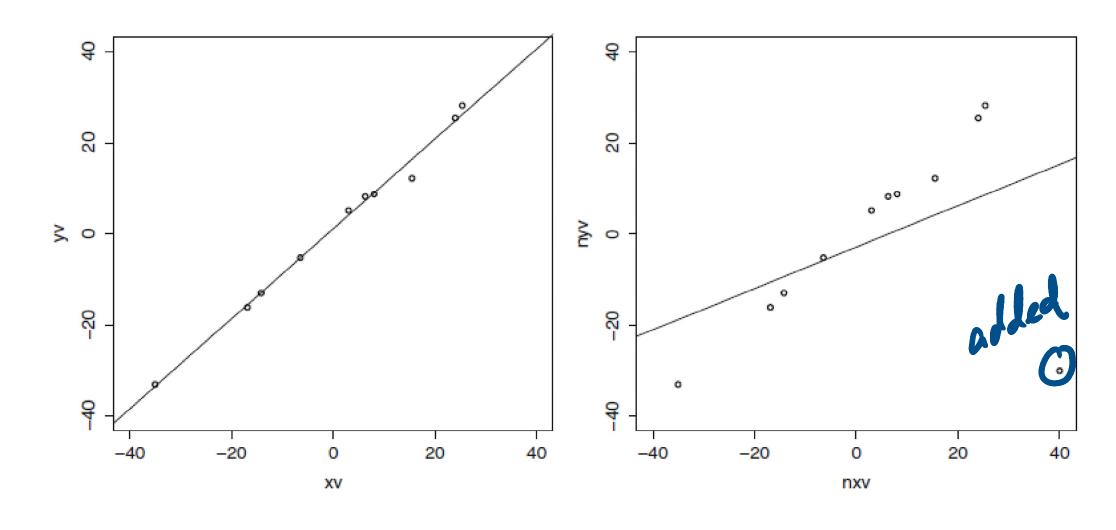
Transforming just the dependent variable



Problems with the data

- Linear regression model parameters are very sensitive to outliers
- It is usually not obvious how to transform the explanatory variables
- Both of these problems can lead to overfitting the model

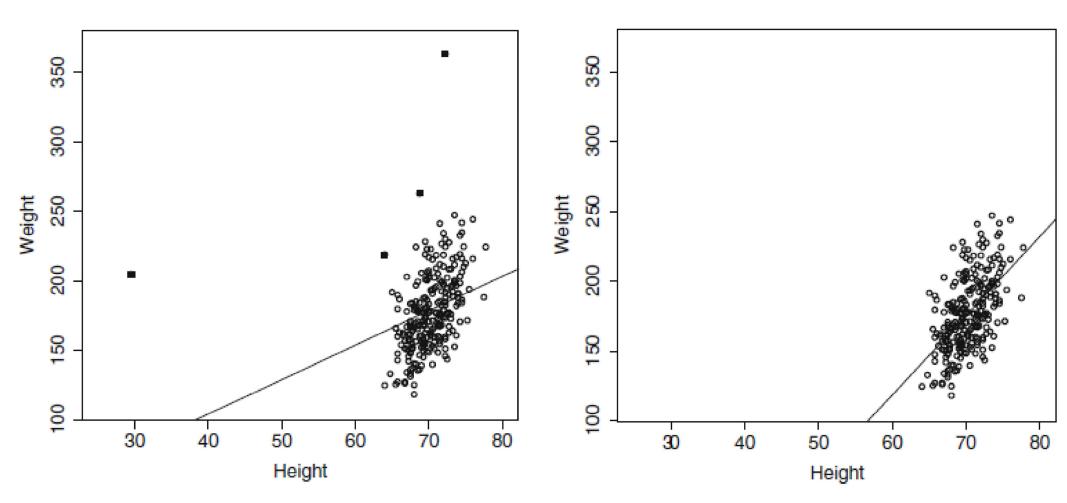
Effect of outliers: synthetic data example



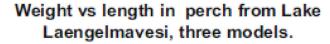
Effect of outliers: body fat example

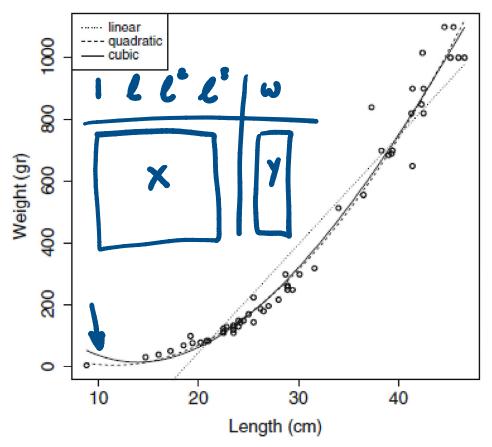
Weight against height, all points

Weight against height, 4 outliers removed

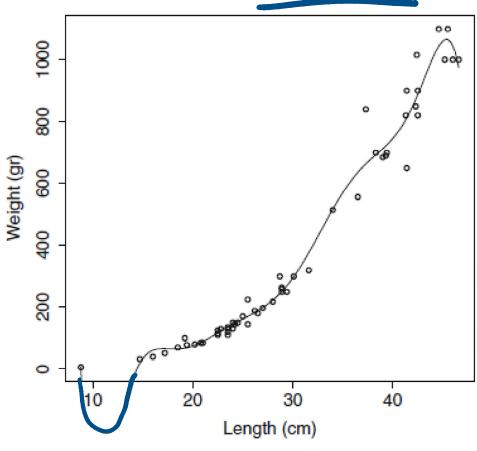


Too many transformed explanatory variables





Weight vs length in perch from Lake Laengelmavesi, all powers up to 10.



Avoiding overfitting

- Method 1: validation
 - Use a validation set to choose the transformed explanatory variables
 - But the number of combinations is exponential in the number of variables
- Method 2: regularization
 - Impose a penalty on complexity of the model during the training
 - ullet Less complex models have smaller model coefficients in the vector $oldsymbol{eta}$
- We can use validation to select the regularization parameter λ

Regularizing the cost function

• In ordinary least squares, the cost function was $\|\mathbf{e}\|^2$

$$\|\mathbf{e}\|^2 = \|\mathbf{y} - X\mathbf{\beta}\|^2 = (\mathbf{y} - X\mathbf{\beta})^T (\mathbf{y} - X\mathbf{\beta})$$

• In regularized least squares, we add a complexity penalty weighted by λ

$$\|\mathbf{y} - X\mathbf{\beta}\|^2 + \lambda \|\mathbf{\beta}\|^2 = (\mathbf{y} - X\mathbf{\beta})^T (\mathbf{y} - X\mathbf{\beta}) + \lambda \mathbf{\beta}^T \mathbf{\beta}$$

Training using regularized least squares

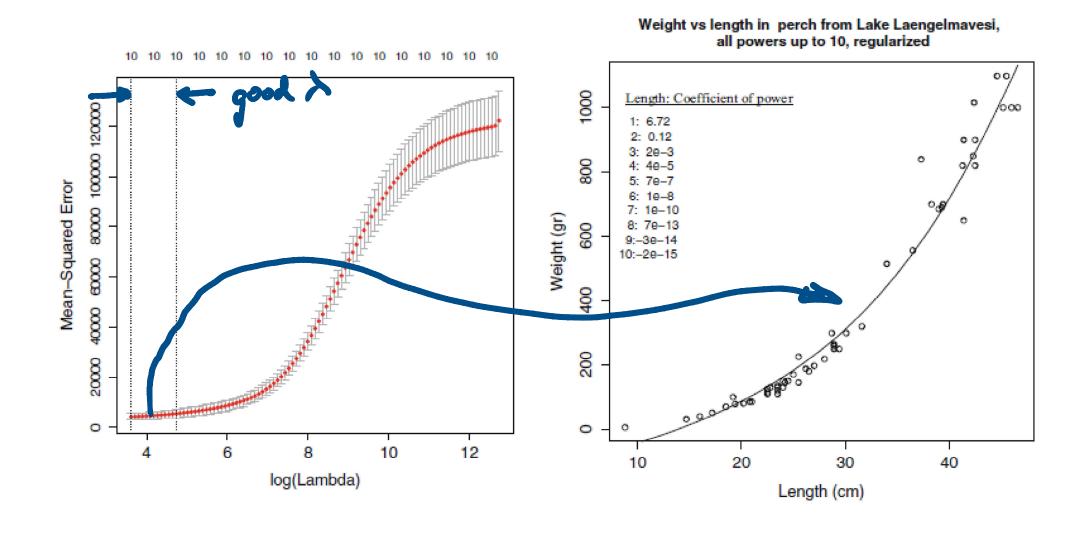
• Differentiating the cost function and setting to zero (and skipping some matrix calculus) gives

$$(X^TX + \lambda I)\boldsymbol{\beta} - X^T\mathbf{y} = \mathbf{0}$$

• $(X^TX + \lambda I)$ is always invertible, so the least squares estimate of the coefficients is

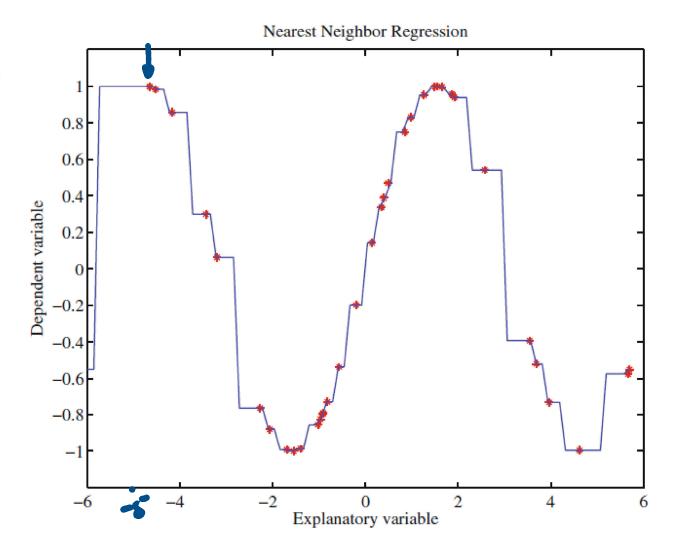
$$\widehat{\boldsymbol{\beta}} = \left(X^T X + \lambda I \right)^{-1} X^T \mathbf{y}$$

Choosing lambda using cross-validation tools



Nearest neighbors regression

- A linear model is not the only solution to regression
- When there is plenty of data,
 k-nearest neighbors
 regression can be used
- k=1 (shown on the right) is uncommon



k-nearest neighbors with weights

The goal is to predict y_0^p from x_0 from a training dataset $\{(x, y)\}$

- Let $\{(\mathbf{x}_j, y_j)\}$ be the set of k items such that \mathbf{x}_j are nearest \mathbf{x}_0
- Predict

$$y_0^p = \frac{\sum_j w_j y_j}{\sum_j w_j}$$

where w_j are weights that drop off as \mathbf{x}_j get further from \mathbf{x}_0

5-nearest neighbors with different weightings

Inverse distance weighting

$$w_j = \frac{1}{\|\mathbf{x}_0 - \mathbf{x}_i\|}$$

Exponential weighting

$$w_j = \exp\left(\frac{\left\|\mathbf{x}_0 - \mathbf{x}_j\right\|^2}{2\sigma}\right)$$

