Today

- (Ch 12) Clustering
 - The curse of dimensionality
 - Multivariate normal distribution
 - The clustering problem
 - k-means algorithm

Next lecture

- (Ch 12) Clustering
 - k-means algorithm
 - Vector quantization
How much of a cubic orange is peel?
What about a d-dimensional cubic orange?

• Total amount of orange

• Amount of fruity part

• Fraction of orange that is peel
The curse of dimensionality

• If a dataset is uniformly distributed in a high-dimensional cube (or some other shape), the vast majority of data is far from the origin

• We can also prove that the distance between data points grows with increasing dimensions

• A d-dimensional histogram of the dataset is not very useful because
 • Most bins will be empty
 • Some bins will contain a single data point
 • Very few bins will contain more than one point
Dealing with data in high dimensions

• Collect as much data as possible

• Cluster data points together into one or more blobs

• Fit a simple probability model to each blob
Multivariate normal distribution

• Extension of the normal distribution to multiple dimensions

• Example: bivariate (2-dimensional) normal distribution

Multivariate normal probability density

A multivariate normal random vector \(\mathbf{X} \) of dimension \(d \) has density

\[
P(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^d |\Sigma|}} \exp \left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right)
\]

where

- \(\boldsymbol{\mu} = E[\mathbf{X}] \) is a \(d \)-dimensional vector called the mean
- \(\Sigma = E[(\mathbf{X} - \boldsymbol{\mu})(\mathbf{X} - \boldsymbol{\mu})^T] \) is a \(d \times d \) symmetric and positive semidefinite matrix called the covariance matrix
Multivariate MLE

Given a d-dimensional dataset $\{x\}$ consisting of N items, we can fit a multivariate normal distribution using maximum likelihood estimation

$$\hat{\mu}_{MLE} = \text{mean}(\{x\}) = \frac{\sum_i x_i}{N}$$

$$\hat{\Sigma}_{MLE} = \text{Covmat}(\{x\}) = \frac{\sum_i (x_i - \text{mean}(\{x\}))(x_i - \text{mean}(\{x\}))^T}{N}$$
The clustering problem

• Given a dataset \(\{x\} \), separate the data items into clusters so that
 • Items within a cluster are close to each other
 • Items in different clusters are far from each other

• There are two problems to solve
 • Determine the number of clusters
 • Assign each item to a cluster

• Note that we are taking unlabeled data and assigning a class label to each item
Clustering approaches

• Divisive clustering
 • Treat the whole dataset as a single cluster
 • Then split the dataset recursively until you get a satisfactory clustering

• Agglomerative clustering
 • Treat each data item as its own cluster
 • Then merge clusters until you get a satisfactory clustering

• Iterative clustering (such as k-means)
Agglomerative clustering: example

In this example the closest pair of clusters is merged at each step.
\textit{k}-means clustering

• Pick a value for \textit{k}, which is the number of clusters

• Select \textit{k} random cluster centers

• Iterate the following two steps until convergence
 • Assign each data item to the nearest cluster center
 • Update each cluster center as the mean of the items assigned to its cluster
1. "k" initial "means" (in this case k=3) are randomly generated within the data domain (shown in color).

2. \(k\) clusters are created by associating every observation with the nearest mean. The partitions here represent the Voronoi diagram generated by the means.

3. The centroid of each of the \(k\) clusters becomes the new mean.

4. Steps 2 and 3 are repeated until convergence has been reached.

k-means clustering result: iris example

true labels

k-means with $k = 2$ clusters
k-means clustering result: iris example

true labels

k-means with $k = 3$ clusters
k-means clustering result: iris example

true labels

k-means with $k = 4$ clusters
k-means clustering result: iris example

true labels

k-means with $k = 5$ clusters
Choosing a value of k

• Given a k-means clustering of N data items \mathbf{x}_i to k cluster centers \mathbf{c}_j, define the sum of square distances from each \mathbf{x}_i to its cluster center as a cost function

$$\sum_{i=1}^{N} \sum_{j=1}^{k} \delta_{i,j} \| \mathbf{x}_i - \mathbf{c}_j \|^2$$

where

$$\delta_{i,j} = \begin{cases}
1 & \text{if } \mathbf{x}_i \in \text{cluster } j \\
0 & \text{if } \mathbf{x}_i \notin \text{cluster } j
\end{cases}$$

• Perform k-means clustering for many values of k and find the knee in the cost function curve
Choosing a value of k: iris example
Some variants of k-means clustering

- Soft assignment allows some data items to belong to multiple clusters with weights associated with each cluster.

- Hierarchical k-means speeds up clustering for very large datasets
 - Sample the dataset and apply k-means with a small value of k
 - Assign all the data to one of the clusters
 - Subcluster each individual cluster
 - Repeat until you have a tree of clusters of your desired depth

- k-medioids allows clustering of data that cannot be averaged