Today

• (Ch 12) Clustering
 • The curse of dimensionality
 • Multivariate normal distribution
 • The clustering problem
 • \(k \)-means algorithm

Next lecture

• (Ch 12) Clustering
 • \(k \)-means algorithm
 • Vector quantization
How much of a cubic orange is peel?

Volume of orange
\[V = 2^3 \]

Fraction that is peel
\[\frac{V - V_{fruit}}{V} = 1 - (1-\varepsilon)^3 \]

Volume of fruit part
\[V_{fruit} = (2 - 2\varepsilon)^3 = 2^3(1-\varepsilon)^3 \]
What about a d-dimensional cubic orange?

- Total amount of orange $= 2^d$

- Amount of fruity part $= (2 - 2\varepsilon)^d = 2^d (1 - \varepsilon)^d$

- Fraction of orange that is peel $= 1 - (1 - \varepsilon)^d \to 1$ as $d \to \infty$

A high dimensional orange is virtually all peel.
The curse of dimensionality

• If a dataset is uniformly distributed in a high-dimensional cube (or some other shape), the vast majority of data is far from the origin

• We can also prove that the distance between data points grows with increasing dimensions

• A d-dimensional histogram of the dataset is not very useful because
 • Most bins will be empty
 • Some bins will contain a single data point
 • Very few bins will contain more than one point
Dealing with data in high dimensions

- Collect as much data as possible
- Cluster data points together into one or more blobs
- Fit a simple probability model to each blob
Multivariate normal distribution

• Extension of the normal distribution to multiple dimensions

• Example: bivariate (2-dimensional) normal distribution

Multivariate normal probability density

A multivariate normal random vector \mathbf{X} of dimension d has density

$$P(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^d |\Sigma|}} \exp \left(-\frac{1}{2} (\mathbf{x} - \mu)^T \Sigma^{-1} (\mathbf{x} - \mu) \right)$$

where

- $\mu = E[\mathbf{X}]$ is a d-dimensional vector called the mean
- $\Sigma = E[(\mathbf{X} - \mu)(\mathbf{X} - \mu)^T]$ is a $d \times d$ symmetric and positive semidefinite matrix called the covariance matrix
Multivariate MLE

Given a d-dimensional dataset $\{x\}$ consisting of N items, we can fit a multivariate normal distribution using maximum likelihood estimation

$$
\hat{\mu}_{MLE} = \text{mean}(\{x\}) = \frac{\sum_i x_i}{N}
$$

$$
\hat{\Sigma}_{MLE} = \text{Covmat}(\{x\}) = \frac{\sum_i (x_i - \text{mean}(\{x\}))(x_i - \text{mean}(\{x\}))^T}{N}
$$
The clustering problem

• Given a dataset \(\{x\} \), separate the data items into clusters so that
 • Items within a cluster are close to each other
 • Items in different clusters are far from each other

• There are two problems to solve
 • Determine the number of clusters
 • Assign each item to a cluster

• Note that we are taking unlabeled data and assigning a class label to each item
Clustering approaches

• Divisive clustering
 • Treat the whole dataset as a single cluster
 • Then split the dataset recursively until you get a satisfactory clustering

• Agglomerative clustering
 • Treat each data item as its own cluster
 • Then merge clusters until you get a satisfactory clustering

• Iterative clustering (such as k-means)
Agglomerative clustering: example

In this example the closest pair of clusters is merged at each step
k-means clustering

- Pick a value for k, which is the number of clusters
- Select k random cluster centers
- Iterate the following two steps until convergence
 - Assign each data item to the nearest cluster center
 - Update each cluster center as the mean of the items assigned to its cluster
k-means clustering: example

1. k initial "means" (in this case $k=3$) are randomly generated within the data domain (shown in color).
2. k clusters are created by associating every observation with the nearest mean. The partitions here represent the Voronoi diagram generated by the means.
3. The centroid of each of the k clusters becomes the new mean.
4. Steps 2 and 3 are repeated until convergence has been reached.

k-means clustering result: iris example

true labels

k-means with $k = 2$ clusters
k-means clustering result: iris example

true labels

k-means with $k = 3$ clusters
k-means clustering result: iris example

true labels

k-means with $k = 4$ clusters
\textit{k}-means clustering result: iris example

true labels

\textit{k}-means with \(k = 5 \) clusters
Choosing a value of k

• Given a k-means clustering of N data items x_i to k cluster centers c_j, define the sum of square distances from each x_i to its cluster center as a cost function

$$\sum_{i=1}^{N} \sum_{j=1}^{k} \delta_{i,j} \|x_i - c_j\|^2$$ where $\delta_{i,j} = \begin{cases} 1 & \text{if } x_i \in \text{cluster } j \\ 0 & \text{if } x_i \notin \text{cluster } j \end{cases}$

• Perform k-means clustering for many values of k and find the knee in the cost function curve
Choosing a value of k: iris example
Some variants of k-means clustering

- Soft assignment allows some data items to belong to multiple clusters with weights associated with each cluster

- Hierarchical k-means speeds up clustering for very large datasets
 - Sample the dataset and apply k-means with a small value of k
 - Assign all the data to one of the clusters
 - Subcluster each individual cluster
 - Repeat until you have a tree of clusters of your desired depth

- k-medioids allows clustering of data that cannot be averaged