Recap

• (Ch 11) Learning to classify
 • Evaluating a classifier
 • Nearest neighbors classifier
 • Naïve Bayes classifier

Today

• (Ch 11) Learning to classify
 • Support vector machine (SVM) classifier
Learning to classify

Given a set of feature vectors \mathbf{x}_i, where each has a class label y_i, we want to train a classifier that can map unlabeled vectors to labels.
How do we know if our classifier is good?

• We want the classifier to avoid making classification mistakes on unlabeled data that we will only see at run-time

• Problem 1: some mistakes may be more costly than others

 We can tabulate different types of error and define a **loss function**

• Problem 2: we will never know the true labels of the run-time data

 We must separate the labeled data into a **training set** and a **validation/test set**
Support vector machine (SVM) overview

- Decision boundary and classification function
- Loss function
- Training
- Validation/testing
- Extension to multiclass classification
SVM problem formulation

• At first we assume a binary classification problem

• The training set consists of \(N \) items
 • Feature vectors \(x_i \) of dimension \(d \)
 • Corresponding class labels \(y_i \in \{±1\} \)

• We can picture the training data as a \(d \)-dimensional scatter plot with colored labels
Decision boundary

- An SVM uses a hyperplane as its **decision boundary**

- Mathematically, the decision boundary is

\[a_1 x^{(1)} + a_2 x^{(2)} + \cdots + a_d x^{(d)} + b = 0 \]

- In vector notation, the decision boundary is

\[a^T x + b = 0 \]
Classification function (or prediction function)

- The SVM assigns a label to a feature vector \mathbf{x}_i according to this rule:

 $$
 \begin{align*}
 +1 & \quad \text{if } \mathbf{a}^T \mathbf{x}_i + b \geq 0 \\
 -1 & \quad \text{if } \mathbf{a}^T \mathbf{x}_i + b < 0
 \end{align*}
 $$

- In other words, the classification function is: $\text{sign}(\mathbf{a}^T \mathbf{x}_i + b)$

- Note that:
 - If $|\mathbf{a}^T \mathbf{x}_i + b|$ is small, then \mathbf{x}_i was close to the decision boundary.
 - If $|\mathbf{a}^T \mathbf{x}_i + b|$ is large, then \mathbf{x}_i was far from the decision boundary.
What if there’s no clean decision boundary?

- Some boundaries are still better than others on the training data.
- Some boundaries are more likely to be robust to as-yet-unseen run-time data.
- We will develop loss functions that tell us if one decision boundary is better than another.
Loss function 1

- For any given feature vector x_i with class label $y_i \in \{\pm 1\}$, we want
 - Zero loss if x_i is classified correctly: $\text{sign}(a^T x_i + b) = y_i$
 - Positive loss if x_i is misclassified: $\text{sign}(a^T x_i + b) \neq y_i$
 - If x_i is misclassified, more loss the further away it is from the boundary

- Loss function 1 meets the requirements: $\max(0, -y_i(a^T x_i + b))$

- Training error cost
 $$S(a, b) = \frac{1}{N} \sum_{i=1}^{N} \max\left(0, -y_i(a^T x_i + b)\right)$$
The problem with loss function 1

- Loss function 1 does not distinguish between the following decision boundaries if they both classify \(x_i\) correctly
 - One that passes close to \(x_i\)
 - One that leaves a wide margin

- But leaving a margin gives robustness to run-time data
Loss function 2: hinge loss

- We want to impose a small positive loss if \(x_i \) is correctly classified but close to the boundary.

- The **hinge loss** meets the requirements: \(\max(0, 1 - y_i (a^T x_i + b)) \)

- Training error cost

\[
S(a, b) = \frac{1}{N} \sum_{i=1}^{N} \max \left(0, 1 - y_i (a^T x_i + b) \right)
\]
The problem with loss function 2

- Loss function 2 favors decision boundaries with large $||\mathbf{a}||$ because increasing $||\mathbf{a}||$ can artificially zero-out the loss for a correctly classified \mathbf{x}_i near the boundary.

- But large $||\mathbf{a}||$ makes the classification function $\text{sign}(\mathbf{a}^T \mathbf{x}_i + b)$ extremely sensitive to small changes in \mathbf{x}_i, which is bad for robustness to run-time data.

- So small $||\mathbf{a}||$ is better.
Hinge loss with regularization penalty

• We add a penalty on the square magnitude $\|a\|^2 = a^T a$

• Training error cost

$$S(a, b) = \left[\frac{1}{N} \sum_{i=1}^{N} \max \left(0, 1 - y_i (a^T x_i + b)\right) \right] + \lambda \left(\frac{a^T a}{2} \right)$$

• The regularization parameter λ trades off between the two objectives
Training procedure

The training error cost $S(a, b)$ is a function of the decision boundary parameters (a, b), so it can help us find the best decision boundary

- Fix λ and set some initial values of (a, b)
- Search iteratively for (a, b) that minimize $S(a, b)$ on the training set
- Repeat the previous steps for several values of λ and choose the one that gives the decision boundary with best accuracy on a validation set
Iterative minimization by gradient descent

- For simplicity, we write

\[S(a, b) = \frac{1}{N} \sum_{i=1}^{N} \max \left(0, 1 - y_i (a^T x_i + b)\right) + \lambda \left(\frac{a^T a}{2}\right) = \frac{1}{N} \sum_{i=1}^{N} S_i(a, b) + S_0(a, b) \]

- The direction of steepest descent is

\[-\nabla S(a, b) = - \frac{1}{N} \sum_{i=1}^{N} \nabla S_i(a, b) - \nabla S_0(a, b) \]

Source: Chris Fregly
Stochastic gradient descent

• The exact $-\nabla S(a, b)$ is too cumbersome to evaluate for large N, so we approximate in each step by randomly sampling a single vector $\mathbf{x}_k \in \{\mathbf{x}_i\}$ with replacement

 Direction of descent: $-\nabla S(a, b) \approx -\nabla S_k(a, b) - \nabla S_0(a, b)$

• Recall that

$$\nabla S_k(a, b) = \begin{bmatrix} \frac{\partial S_k}{\partial a_1} \\ \vdots \\ \frac{\partial S_k}{\partial b} \end{bmatrix}$$

Source: Chris Fregly
Update equations for parameters \((a, b)\)

Since \(S_k(a, b) = \max \left(0, 1 - y_k(a^T x_k + b)\right)\) and \(S_0(a, b) = \lambda \left(\frac{a^T a}{2}\right)\), we have the following update equations:

If \(y_k(a^T x_k + b) \geq 1\)

\[
\begin{align*}
\cdot & \quad a \leftarrow a - \eta(\lambda a) \\
\cdot & \quad b \leftarrow b - 0
\end{align*}
\]

If \(y_k(a^T x_k + b) < 1\)

\[
\begin{align*}
\cdot & \quad a \leftarrow a - \eta(\lambda a - y_k x_k) \\
\cdot & \quad b \leftarrow b - \eta(-y_k)
\end{align*}
\]

An **epoch** is a certain number of steps in the descent (usually set to be approximately the size \(N\) of the training set).

In the \(e\)th epoch, it is common to set the **steplength** \(\eta = \frac{m}{e + n}\) where \(m\) and \(n\) are constants chosen by experiment.
Validation/testing

• Split the labeled data into **training**, **validation** and **test** sets

• For each choice of λ, run stochastic gradient descent to find the best decision boundary parameters (a, b) using the **training** set

• Choose the best λ based on accuracy on the **validation** set

• Finally evaluate the SVM’s accuracy on the **test** set

• This process avoids overfitting (a, b) and λ
Extension to multiclass classification

• All vs. all
 • Train a separate binary classifier for each pair of classes
 • To classify, run all classifiers and see which class label is chosen most
 • Computational complexity scales quadratically with the number of classes

• One vs. all
 • Train a separate binary classifier for each class against all other classes
 • To classify, run all classifiers and see which class label gets the highest score
 • Computational complexity scales linearly with the number of classes

• Both approaches can work well in practice