Recap

• (Ch 11) Learning to classify
 • Evaluating a classifier
 • Nearest neighbors classifier
 • Naïve Bayes classifier

Today

• (Ch 11) Learning to classify
 • Support vector machine (SVM) classifier
Learning to classify

Given a set of **feature vectors** \mathbf{x}_i, where each has a **class label** y_i, we want to train a classifier that can map unlabeled vectors to labels.
How do we know if our classifier is good?

• We want the classifier to avoid making classification mistakes on unlabeled data that we will only see at run-time

• Problem 1: some mistakes may be more costly than others

 We can tabulate different types of error and define a loss function

• Problem 2: we will never know the true labels of the run-time data

 We must separate the labeled data into a training set and a validation/test set
Support vector machine (SVM) overview

• Decision boundary and classification function

• Loss function

• Training

• Validation/testing

• Extension to multiclass classification
SVM problem formulation

• At first we assume a binary classification problem

• The training set consists of N items
 • Feature vectors x_i of dimension d
 • Corresponding class labels $y_i \in \{\pm 1\}$

• We can picture the training data as a d-dimensional scatter plot with colored labels
Decision boundary

• An SVM uses a hyperplane as its **decision boundary**

• Mathematically, the decision boundary is

\[a_1 x^{(1)} + a_2 x^{(2)} + \cdots + a_d x^{(d)} + b = 0 \]

• In vector notation, the decision boundary is

\[\mathbf{a}^T \mathbf{x} + b = 0 \]
Classification function (or prediction function)

• The SVM assigns a label to a feature vector \mathbf{x}_i according to this rule

$$
+1 \quad \text{if} \quad \mathbf{a}^T \mathbf{x}_i + b \geq 0 \\
-1 \quad \text{if} \quad \mathbf{a}^T \mathbf{x}_i + b < 0
$$

• In other words, the classification function is: $\text{sign}(\mathbf{a}^T \mathbf{x}_i + b)$

• Note that
 • If $|\mathbf{a}^T \mathbf{x}_i + b|$ is small, then \mathbf{x}_i was close to the decision boundary
 • If $|\mathbf{a}^T \mathbf{x}_i + b|$ is large, then \mathbf{x}_i was far from the decision boundary
What if there’s no clean decision boundary?

• Some boundaries are still better than others on the training data

• Some boundaries are more likely to be robust to as-yet-unseen run-time data

• We will develop loss functions that tell us if one decision boundary is better than another
Loss function 1

• For any given feature vector \(\mathbf{x}_i \) with class label \(y_i \in \{ \pm 1 \} \), we want

 • Zero loss if \(\mathbf{x}_i \) is classified correctly: \(\text{sign}(\mathbf{a}^T \mathbf{x}_i + b) = y_i \)
 • Positive loss if \(\mathbf{x}_i \) is misclassified: \(\text{sign}(\mathbf{a}^T \mathbf{x}_i + b) \neq y_i \)
 • If \(\mathbf{x}_i \) is misclassified, more loss the further away it is from the boundary

• Loss function 1 meets the requirements: \(\max(0, -y_i (\mathbf{a}^T \mathbf{x}_i + b)) \)

• Training error cost

\[
S(\mathbf{a}, b) = \frac{1}{N} \sum_{i=1}^{N} \max(0, -y_i (\mathbf{a}^T \mathbf{x}_i + b))
\]
The problem with loss function 1

• Loss function 1 does not distinguish between the following decision boundaries if they both classify x_i correctly
 • One that passes close to x_i
 • One that leaves a wide margin

• But leaving a margin gives robustness to run-time data
Loss function 2: hinge loss

• We want to impose a small positive loss if x_i is correctly classified but close to the boundary

• The **hinge loss** meets the requirements: $\max(0, 1 - y_i(a^T x_i + b))$

• Training error cost

$$S(a, b) = \frac{1}{N} \sum_{i=1}^{N} \max(0, 1 - y_i(a^T x_i + b))$$
The problem with loss function 2

• Loss function 2 favors decision boundaries with large $\|a\|$ because increasing $\|a\|$ can artificially zero-out the loss for a correctly classified x_i near the boundary

• But large $\|a\|$ makes the classification function $\text{sign}(a^T x_i + b)$ extremely sensitive to small changes in x_i, which is bad for robustness to run-time data

• So small $\|a\|$ is better
Hinge loss with regularization penalty

• We add a penalty on the square magnitude \(\|a\|^2 = a^T a \)

• Training error cost

\[
S(a, b) = \left[\frac{1}{N} \sum_{i=1}^{N} \max(0, 1 - y_i (a^T x_i + b)) \right] + \lambda \left(\frac{a^T a}{2} \right)
\]

• The regularization parameter \(\lambda \) trades off between the two objectives
Training procedure

The training error cost $S(a, b)$ is a function of the decision boundary parameters (a, b), so it can help us find the best decision boundary

- Fix λ and set some initial values of (a, b)

- Search iteratively for (a, b) that minimize $S(a, b)$ on the training set

- Repeat the previous steps for several values of λ and choose the one that gives the decision boundary with best accuracy on a validation set
Iterative minimization by gradient descent

- For simplicity, we write

\[
S(a, b) = \left[\frac{1}{N} \sum_{i=1}^{N} \max(0, 1 - y_i(a^T x_i + b)) \right] + \lambda \left(\frac{a^T a}{2} \right) = \left[\frac{1}{N} \sum_{i=1}^{N} S_i(a, b) \right] + S_0(a, b)
\]

- The direction of steepest descent is

\[
-\nabla S(a, b) = - \left[\frac{1}{N} \sum_{i=1}^{N} \nabla S_i(a, b) \right] - \nabla S_0(a, b)
\]

Source: Chris Fregly
Stochastic gradient descent

• The exact $-\nabla S(a, b)$ is too cumbersome to evaluate for large N, so we approximate in each step by randomly sampling a single vector $x_k \in \{x_i\}$ with replacement

Direction of descent: $-\nabla S(a, b) \approx -\nabla S_k(a, b) - \nabla S_0(a, b)$

• Recall that

$$\nabla S_k(a, b) = \begin{bmatrix} \frac{\partial S_k}{\partial a_1} \\ \vdots \\ \frac{\partial S_k}{\partial b} \end{bmatrix}$$

Source: Chris Fregly
Update equations for parameters \((a, b)\)

Since \(S_k(a, b) = \max(0, 1 - y_k(a^T x_k + b))\) and \(S_0(a, b) = \lambda \left(\frac{a^T a}{2}\right)\), we have the following update equations

<table>
<thead>
<tr>
<th>If (y_k(a^T x_k + b) \geq 1)</th>
<th>If (y_k(a^T x_k + b) < 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• (a \leftarrow a - \eta(\lambda a))</td>
<td>• (a \leftarrow a - \eta(\lambda a - y_k x_k))</td>
</tr>
<tr>
<td>• (b \leftarrow b)</td>
<td>• (b \leftarrow b - \eta(-y_k))</td>
</tr>
</tbody>
</table>

An **epoch** is a certain number of steps in the descent (usually set to be approximately the size \(N\) of the training set)

In the \(e\)th epoch, it is common to set the **steplength** \(\eta = \frac{m}{e+n}\)

where \(m\) and \(n\) are constants chosen by experiment
Validation/testing

• Split the labeled data into training, validation and test sets

• For each choice of λ, run stochastic gradient descent to find the best decision boundary parameters (a, b) using the training set

• Choose the best λ based on accuracy on the validation set

• Finally evaluate the SVM’s accuracy on the test set

• This process avoids overfitting (a, b) and λ
Extension to multiclass classification

• **All vs. all**
 • Train a separate binary classifier for each pair of classes
 • To classify, run all classifiers and see which class label is chosen most
 • Computational complexity scales quadratically with the number of classes

• **One vs. all**
 • Train a separate binary classifier for each class against all other classes
 • To classify, run all classifiers and see which class label gets the highest score
 • Computational complexity scales linearly with the number of classes

• Both approaches can work well in practice