Today

• (Ch 11) Learning to classify
 • Nearest neighbors classifier
 • Evaluating a classifier
 • Naïve Bayes classifier

The next two lectures

• (Ch 11) Learning to classify
 • Support vector machine (SVM) classifier
 • Random forest classifier
Learning to classify

Given a set of **feature vectors** \mathbf{x}_i, where each has a **class label** y_i, we want to train a classifier that can map unlabeled vectors to labels.
Binary classifiers

• A binary classifier maps each feature vector to one of two classes

• For example, you can train a classifier to:
 • Look at a Twitter user’s posts, time of posting, followers, etc. to predict whether the user is a bot
 • Look at a credit card transaction’s amount, merchant, time, country, etc. to predict whether it is fraudulent
 • Look at a segment of DNA’s sequence of bases to predict whether the segment is coding or non-coding (that is, whether the segment of DNA has a known biological function)
Multiclass classifiers

• A multiclass classifier maps to one of three or more classes

• For example, you can train a classifier to:
 • Look at a patient’s current symptoms, lab test results, medical record, etc. to predict a diagnosis
 • Look at an image of a ZIP code to predict which ZIP it is
Nearest neighbors classifier

• Given an unlabeled feature vector \(\mathbf{x} \)
 • Calculate the distance from \(\mathbf{x} \) to each labeled feature vector \(\mathbf{x}_i \)
 • Find the closest labeled \(\mathbf{x}_i \)
 • Assign the same label to \(\mathbf{x} \)

• Practical issues
 • We need a distance metric
 • We should first standardize the data
 • Classification complexity grows linearly in number of labeled feature vectors

Variants of nearest neighbors classifier

• In k-nearest neighbors, the classifier:
 • Looks at the k nearest labeled feature vectors x_i
 • Assigns a label to x based on a majority vote

• In (k, l)-nearest neighbors, the classifier:
 • Looks at the k nearest labeled feature vectors x_i
 • Assigns a label to x if at least l of them agree on a label

How do we know if our classifier is good?

• We want the classifier to avoid making classification mistakes on unlabeled data that we will only see at run-time

• Problem 1: some mistakes may be more costly than others

 We can tabulate different types of error and define a loss function

• Problem 2: we will never know the true labels of the run-time data

 We must separate the labeled data into a training set and a validation/test set
Performance of a binary classifier

• A binary classifier can make two types of mistake
 • False positive: the classifier assigns a positive label when the truth is negative
 • False negative: the other way

• Sometimes one type of error is more costly
 • Pregnancy test
 • Death penalty trial

• We can tabulate the performance in a class confusion matrix

Source: rasbt.github.io
Binary classifier with 0-1 loss function

- A **loss function** assigns costs to mistakes

- The 0-1 loss function treats FPs and FNs the same
 - It assigns loss 1 to every mistake
 - It assigns loss 0 to every correct decision

- Under the 0-1 loss function
 \[
 \text{accuracy} = \frac{TP + TN}{TP + TN + FP + FN} \quad \text{and} \quad \text{error} = 1 - \text{accuracy}
 \]

- The baseline accuracy is 50%, which we get by classifying randomly
Performance of a multiclass classifier

Assuming there are c classes:

• The class confusion matrix is $c \times c$

• Under the 0-1 loss function

\[
\text{accuracy} = \frac{\text{sum of diagonal terms}}{\text{sum of all terms}}
\]

• The baseline accuracy is $\frac{1}{c}$

Source: qingkaikong.blogspot.com
Training set vs. validation/test set

• We expect a classifier to perform worse on run-time data than on the labeled data used for training
 • Sometimes it will perform much worse: an effect called overfitting
 • An extreme example: a classifier that classifies correctly if the input feature vector is in the training set, but otherwise makes a random guess

• To protect against overfitting, we separate the labeled data
 • The training set is for training the classifier
 • The validation/test set is for evaluating the performance on unused data

• It is common to reserve 10% to 20% of the data for validation
Cross-validation

• If we don’t want to “waste” labeled data on validation, we can use **cross-validation** to see if our training methodology is sound

• Split the labeled data into training and validation sets in multiple ways

• For each split (called a **fold**)
 • train a classifier on the training set
 • evaluate its accuracy on the validation set

• Average the accuracy to evaluate the training methodology
Naïve Bayes classifier: a probabilistic method

• Training
 • Use the training data \{((x_i, y_i))\} to estimate a probability model \(P(y|x)\)
 • Assume that the features of \{x\} are conditionally independent given the class label \(y\)

\[
P(x|y) = \prod_{j=1}^{d} P(x^{(j)}|y)
\]

• Classification
 • Assign the label \(\arg \max_y P(y|x)\) to feature vector \(x\)
Naïve Bayes model

$$\text{arg max } P(y|x)$$

$$= \text{arg max } y \frac{P(x|y)P(y)}{P(x)}$$

$$= \text{arg max } y P(x|y)P(y)$$

$$= \text{arg max } y \prod_{j=1}^{d} P(x^{(j)}|y) P(y)$$

$$= \text{arg max } y \sum_{j=1}^{d} \log P(x^{(j)}|y) + \log P(y)$$

The final expression avoids numerical issues related to tiny probabilities
Modeling the prior and the likelihoods

• Model the prior $P(y)$ based on the frequency of y in the training set
 • For a binary classifier, this model is a Bernoulli random variable

• Model each likelihood $P(x^{(j)} | y)$ by:
 • Selecting an appropriate family of distributions
 • Normal for real-valued numerical data
 • Poisson for counts in fixed intervals
 • Etc.
 • Fitting the parameters of the distribution using MLE from Chapter 9
Naïve Bayes training example

Training data

<table>
<thead>
<tr>
<th>x^{(1)}</th>
<th>x^{(2)}</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>1.0</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>0.0</td>
<td>10</td>
<td>−1</td>
</tr>
<tr>
<td>−3.0</td>
<td>14</td>
<td>−1</td>
</tr>
</tbody>
</table>

Modeling $P(x^{(1)}|y)$ as normal
- $P(x^{(1)}|y = 1)$
 - $\mu_{MLE} = \frac{3.5 + 1.0}{2} = 2.25$
 - $\sigma_{MLE} = 1.25$
- $P(x^{(1)}|y = −1)$
 - $\mu_{MLE} = −1.5$
 - $\sigma_{MLE} = 1.5$

Modeling $P(x^{(2)}|y)$ as Poisson
- $P(x^{(2)}|y = 1)$
 - $\lambda_{MLE} = \frac{10 + 8}{2} = 9$
- $P(x^{(2)}|y = −1)$
 - $\lambda_{MLE} = 12$

Modeling $P(y)$ as Bernoulli
- $P(y = 1) = \frac{2}{4} = 0.5$
- $P(y = −1) = 0.5$