Recap

* (Ch 10) Data in high dimensions
* Visualizing data
 Summarizing data

oday

* (Ch 10) Data in high dimensions

* Dimensionality reduction
* Principal components analysis



Covariance matrix of multidimensional data

* Given a dataset {x} of N d-dimensional vectors X;, the covariance
matrix is a d X d matrix

X.i(x; — mean({x}))(x; — mean({x}))"

>

Covmat({x}) =

* Properties
* The (j, k) entry of Covmat({x}) is Cov({x(j)}, {X(k)})
* The (j,j) entry of Covmat({x}) is Var({x(j)})
« Covmat({x}) is symmetric




Translation properties

* Translating the data translates the mean

mean({x + c¢}) = mean({x}) + c

* Translating the data leaves the covariance matrix unchanged

Covmat({x + c¢}) = Covmat({x})



Linear transformation properties

* Linearly transforming the data linearly transforms the mean

mean({Ax}) = A mean({x})

* Linearly transforming the data changes the covariance matrix

Covmat({4x}) = A Covmat({x}) AT



Dimensionality reduction: 2D to 1D example




Step 1: subtract mean

Translate center to origin
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Step 2: apply linear transformation

covariance

Rotate to diagonalize

o



Step 3: drop component(s)

Project to x-axis




Principal components analysis (PCA)

We will reduce the dimensionality of dataset {x} from d to s
e Step 1: define {m} such that m; = x; — mean({x})

e Step 2: define {r} such thatr; = U'm;

where A = UTCovmat({x})U is the diagonalization of Covmat({x}) with the
eigenvalues sorted in decreasing order

* Step 3: define {p} such that each p; is r; with the last d — s
components zeroed out (or discarded)



What happens to the mean?

* Step 1:
mean({m}) = mean({x}) — mean({x}) = 0
* Step 2:
mean({r}) = U'mean({m}) = UT0 =0
* Step 3:

mean({p}) = mean({r}) =0



What happens to the covariance matrix?

* Step 1.

Covmat({m}) = Covmat({x}) T - ]
k——\f-—
* Step 2: l.
Ve

M
Covmat({r}) = UTCovmat({m}DU = A

B

Covmat({p}) is A with the last d — s diagonal terms zeroed out

A
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The mean square error is the sum of the smallest d — s eigenvalues in A



PCA: iris dataset example

* The Iris dataset is a famous dataset consisting of measurements of three
different varieties of iris flowers
* |ris-setosa
* |ris-versicolor
* |ris-virginica
-4
* There area4 measurements per item
e Sepal length (cm)
e Sepal width (cm)
* Petal length (cm)
e Petal width (cm)

* See today’s Jupyter notebook



Reconstructing the data

e Given the projected dataset {p} and mean({x}), we can
approximately reconstruct the original dataset as {X}

X; = Up; + mean({x})

* Notice that each reconstructed data item X; is mean({x}) plus a
linear combination of the columns of U weighted by the entries in p;

* The columns of U are the normalized eigenvectors of Covmat({x})
and are called the principal components of the data {x}



End-to-end mean square error

* Each x; becomes r; by translation and rotation
* Each p; becomes X; by the opposite rotation and translation
* Therefore, the end-to-end mean square error is

1N
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where A¢. 4, ..., A4 are the smallest d — s eigenvalues of Covmat({x})



PCA: Japanese face dataset example

* The dataset consists of 213 images of Japanese women
* Each image is grayscale and has 64 X 64 resolution

* We can treat each image as a vector of dimension d = 4096




How quickly do the eigenvalues drop off?
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What do the principal components look like?

Mean image from Japanese Facial Expression dataset

'g
First sixteen principal components

* The mean face is blurry

* The first few principal
components capture
» Shape of hair
* Height of face
* Height of eyebrows
* Etc.



What do the reconstructions look like?
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