Recap

- (Ch 10) Data in high dimensions
 - Visualizing data
 - Summarizing data

Today

- (Ch 10) Data in high dimensions
 - Dimensionality reduction
 - Principal components analysis

Covariance matrix of multidimensional data

• Given a dataset $\{\mathbf{x}\}$ of N d-dimensional vectors \mathbf{x}_i , the covariance matrix is a $d \times d$ matrix

$$Covmat(\{\mathbf{x}\}) = \frac{\sum_{i} (\mathbf{x}_i - mean(\{\mathbf{x}\}))(\mathbf{x}_i - mean(\{\mathbf{x}\}))^T}{N}$$

- Properties
 - The (j, k) entry of $Covmat(\{\mathbf{x}\})$ is $cov(\{\mathbf{x}^{(j)}\}, \{\mathbf{x}^{(k)}\})$
 - The (j,j) entry of $Covmat(\{\mathbf{x}\})$ is $var(\{\mathbf{x}^{(j)}\})$
 - Covmat({x}) is symmetric

Translation properties

Translating the data translates the mean

$$mean(\{\mathbf{x} + \mathbf{c}\}) = mean(\{\mathbf{x}\}) + \mathbf{c}$$

Translating the data leaves the covariance matrix unchanged

$$Covmat(\{x + c\}) = Covmat(\{x\})$$

Linear transformation properties

Linearly transforming the data linearly transforms the mean

$$mean({Ax}) = A mean({x})$$

Linearly transforming the data changes the covariance matrix

$$Covmat({Ax}) = A Covmat({x}) A^T$$

Dimensionality reduction: 2D to 1D example

Step 1: subtract mean

Step 2: apply linear transformation

Step 3: drop component(s)

Principal components analysis (PCA)

We will reduce the dimensionality of dataset $\{x\}$ from d to s

- Step 1: define $\{\mathbf{m}\}$ such that $\mathbf{m}_i = \mathbf{x}_i \text{mean}(\{\mathbf{x}\})$
- Step 2: define $\{\mathbf{r}\}$ such that $\mathbf{r}_i = U^T \mathbf{m}_i$ where $\Lambda = U^T \operatorname{Covmat}(\{\mathbf{x}\})U$ is the diagonalization of $\operatorname{Covmat}(\{\mathbf{x}\})$ with the eigenvalues sorted in decreasing order
- Step 3: define $\{\mathbf{p}\}$ such that each \mathbf{p}_i is \mathbf{r}_i with the last d-s components zeroed out (or discarded)

What happens to the mean?

• Step 1:

$$mean(\{\mathbf{m}\}) = mean(\{\mathbf{x}\}) - mean(\{\mathbf{x}\}) = \mathbf{0}$$

• Step 2:

$$mean(\{\mathbf{r}\}) = U^T mean(\{\mathbf{m}\}) = U^T \mathbf{0} = \mathbf{0}$$

• Step 3:

$$mean(\{\mathbf{p}\}) = mean(\{\mathbf{r}\}) = \mathbf{0}$$

What happens to the covariance matrix?

• Step 1:

$$Covmat(\{\mathbf{m}\}) = Covmat(\{\mathbf{x}\})$$

• Step 2:

$$Covmat(\{\mathbf{r}\}) = U^T Covmat(\{\mathbf{m}\})U = \Lambda$$

• Step 3:

Covmat($\{\mathbf{p}\}$) is Λ with the last d-s diagonal terms zeroed out

Mean square error of the projection (step 3)

$$\frac{1}{N}\sum_{i}||\mathbf{r}_{i}-\mathbf{p}_{i}||^{2} = \frac{1}{N}\sum_{i}\sum_{j=s+1}^{d}\left(r_{i}^{(j)}\right)^{2} = \sum_{j=s+1}^{d}\left(\mathbf{r}_{i}^{(j)}\right)^{2}$$

$$= \sum_{j=s+1}^{d}\operatorname{var}\left(\mathbf{f}^{(j)}\right) \quad \text{since mean}\left(\mathbf{f}^{(j)}\right) = 0$$

$$= \sum_{j=s+1}^{d}\lambda_{j} \quad \text{since the variances are diagonal articles of Covamily } \mathbf{f}^{(j)} = \mathbf{f}^{(j)}$$

The mean square error is the sum of the smallest d-s eigenvalues in Λ

PCA: iris dataset example

- The Iris dataset is a famous dataset consisting of measurements of three different varieties of iris flowers
 - Iris-setosa
 - Iris-versicolor
 - Iris-virginica

- There are 4 measurements per item
 - Sepal length (cm)
 - Sepal width (cm)
 - Petal length (cm)
 - Petal width (cm)
- See today's Jupyter notebook

Reconstructing the data

• Given the projected dataset $\{p\}$ and mean $(\{x\})$, we can approximately reconstruct the original dataset as $\{\hat{x}\}$

$$\hat{\mathbf{x}}_i = U\mathbf{p}_i + \text{mean}(\{\mathbf{x}\})$$

- Notice that each reconstructed data item $\hat{\mathbf{x}}_i$ is mean($\{\mathbf{x}\}$) plus a linear combination of the columns of U weighted by the entries in \mathbf{p}_i
- The columns of U are the normalized eigenvectors of $Covmat(\{x\})$ and are called the **principal components** of the data $\{x\}$

End-to-end mean square error

- Each \mathbf{x}_i becomes \mathbf{r}_i by translation and rotation
- Each \mathbf{p}_i becomes $\hat{\mathbf{x}}_i$ by the opposite rotation and translation
- Therefore, the end-to-end mean square error is

$$\frac{1}{N} \sum_{i} \|\hat{\mathbf{x}}_{i} - \mathbf{x}_{i}\|^{2} = \frac{1}{N} \sum_{i} \|\mathbf{r}_{i} - \mathbf{p}_{i}\|^{2} = \sum_{j=s+1}^{a} \lambda_{j}$$

where $\lambda_{s+1}, \dots, \lambda_d$ are the smallest d-s eigenvalues of Covmat($\{x\}$)

PCA: Japanese face dataset example

- The dataset consists of 213 images of Japanese women
- Each image is grayscale and has 64×64 resolution
- We can treat each image as a vector of dimension d=4096

How quickly do the eigenvalues drop off?

What do the principal components look like?

Mean image from Japanese Facial Expression dataset

First sixteen principal components

- The mean face is blurry
- The first few principal components capture
 - Shape of hair
 - Height of face
 - Height of eyebrows
 - Etc.

What do the reconstructions look like?

Number of principal components

Original image

mean

l

5

10

20

50

100

Reconstructions

Error

