Recap

- (Ch 9) Inferring a probability model from a dataset
 - Maximum likelihood estimation (MLE)
 - Confidence intervals for MLE estimates

Today

- (Ch 9) Inferring a probability model from a dataset
 - Bayesian inference
 - Conjugate priors
- Review of eigenvalues, eigenvectors and diagonalization
Maximum likelihood estimation (MLE)

• We write the probability of seeing the data D given parameters θ

\[L(\theta) = P(D|\theta) \]

• The likelihood function $L(\theta)$ is not a probability distribution

• The maximum likelihood estimate of θ is

\[\hat{\theta} = \arg \max_{\theta} L(\theta) \]
MLE: binomial example

• Suppose we have a coin of unknown probability θ of heads

• We toss it 10 times and observe 7 heads

• The likelihood function is

$$L(\theta) = P(D|\theta) = \binom{10}{7} \theta^7 (1 - \theta)^3$$

• The MLE is $\hat{\theta} = 0.7$
Drawbacks of MLE

- Maximizing some likelihood or log-likelihood functions is intractable

- If there isn’t much data, the MLE estimate may be unreliable
 - If we observe 3 heads in 10 coin tosses, should we accept that $P(\text{heads}) = 0.3$?
 - If we observe 0 heads in 2 coin tosses, should we accept that $P(\text{heads}) = 0$?
Bayesian inference

• In MLE, we maximized the likelihood function $L(\theta) = P(D|\theta)$

• In Bayesian inference, we will maximize the posterior, which is the probability of the parameters θ given the observed data D

$$P(\theta|D)$$

• Unlike $L(\theta)$, the posterior is a probability distribution

• The value of θ that maximizes $P(\theta|D)$ is called the maximum a posteriori (MAP) estimate $\hat{\theta}$
The prior

- From Bayes rule
 \[P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)} \propto P(D|\theta)P(\theta) \]

- We ignore the probability of the data \(P(D) \) because it is constant

- Bayesian inference allows us to incorporate prior beliefs about \(\theta \) in the **prior** \(P(\theta) \), which is useful
 - when we have some beliefs, such as a coin cannot have \(P(\text{heads}) = 0 \)
 - when there isn’t much data
Bayesian inference: discrete prior example

• Suppose we have a coin of unknown probability θ of heads
 • We see heads 7 times in 10 tosses as the data D
 • Say we also have prior information about θ: $P(\theta) = \begin{cases}
2/3 & \text{if } \theta = 0.5 \\
1/3 & \text{if } \theta = 0.6 \\
0 & \text{otherwise}
\end{cases}$

• Applying Bayes rule with $P(D|\theta) = \binom{10}{7} \theta^7(1 - \theta)^3$ gives

$$P(\theta|D) = \begin{cases}
0.52 & \text{if } \theta = 0.5 \\
0.48 & \text{if } \theta = 0.6 \\
0 & \text{otherwise}
\end{cases}$$

MAP estimate $\hat{\theta} = 0.5$
Bayesian inference: continuous prior example

• Suppose we have a coin of unknown probability θ of heads

 • We see heads 7 times in 10 tosses as the data D

 • Say we also have prior information about θ: $P(\theta) = \begin{cases} 5 & \text{if } \theta \in [0.4, 0.6] \\ 0 & \text{if } \theta \not\in [0.4, 0.6] \end{cases}$

vertical axis is not to scale

$P(D|\theta) = L(\theta)$

$P(\theta|D) \propto P(D|\theta)P(\theta)$

MAP estimate $\hat{\theta} = 0.6$
Drawbacks of Bayesian inference

- Maximizing some posteriors $P(\theta|D)$ is intractable
- Some choices of prior $P(\theta)$ can overwhelm any data you observe
- It is hard to justify a choice of prior $P(\theta)$
Conjugate priors

• For a given likelihood function $P(D|\theta)$, a conjugate prior $P(\theta)$ has the following properties
 • The prior $P(\theta)$ belongs to a family of distributions that are expressive
 • The posterior $P(\theta|D) \propto P(D|\theta)P(\theta)$ belongs to the same family as $P(\theta)$
 • The posterior $P(\theta|D)$ is easy to maximize

• We will illustrate these properties for the binomial likelihood, which has a prior called the Beta distribution
Conjugate prior is expressible

\[\mathcal{L}(\theta) = \binom{N}{k} \theta^k (1-\theta)^{N-k} \]

- The conjugate prior for a binomial likelihood is a \(\text{Beta}(\alpha, \beta) \) distribution

\[P(\theta) = K(\alpha, \beta) \theta^{\alpha-1} (1 - \theta)^{\beta-1} \]

where \(K(\alpha, \beta) \) is a constant

- \(\text{Beta}(\alpha, \beta) \) can express a variety of shapes

- \(\text{Beta}(\alpha = 1, \beta = 1) \) is uniform

Posterior is in same family as conjugate prior

- The likelihood is $\text{Binomial}(N, k)$ and the prior is $\text{Beta}(\alpha, \beta)$

\[P(D|\theta) = \binom{N}{k} \theta^k (1 - \theta)^{N-k} \]

\[P(\theta) = K(\alpha, \beta) \theta^{\alpha-1} (1 - \theta)^{\beta-1} \]

- Then the posterior is $\text{Beta}(\alpha + k, \beta + N - k)$

\[P(\theta|D) = K(\alpha + k, \beta + N - k) \theta^{\alpha+k-1} (1 - \theta)^{\beta+N-k-1} \]
Updating the posterior

- Since the posterior is in the same family as the conjugate prior, the posterior can be used as a new prior if more data is observed.

- Suppose we start with a uniform prior on the probability θ of heads:
 - Then we observe 3H 0T
 - Then we observe 4H 3T for 7H 3T in total
 - Then we observe 10H 10T for 17H 13T in total
 - Then we observe 55H 15T for 72H 28T in total
Posterior is easy to maximize

• The posterior is $\text{Beta}(\alpha + k, \beta + N - k)$

$$P(\theta|D) = K(\alpha + k, \beta + N - k)\theta^{\alpha + k - 1}(1 - \theta)^{\beta + N - k - 1}$$

• Differentiating and setting to 0 gives the MAP estimate

$$\hat{\theta} = \frac{\alpha - 1 + k}{\alpha + \beta - 2 + N}$$
Conjugate priors for other likelihood functions

- If the likelihood is Bernoulli or geometric, the conjugate prior is Beta

- If the likelihood is Poisson or exponential, the conjugate prior is Gamma

- If the likelihood is normal with known variance, the conjugate prior is normal
Eigenvalues and eigenvectors review

• If A is an $n \times n$ square matrix, an eigenvalue λ and its corresponding eigenvector \mathbf{v} (of dimension $n \times 1$) have the property that $A\mathbf{v} = \lambda \mathbf{v}$.

• To solve for λ, we solve the characteristic equation $|A - \lambda I| = 0$.

• Given a value of λ, we find the corresponding eigenvector(s) by solving $(A - \lambda I)\mathbf{v} = 0$.

• Note that if \mathbf{v} is an eigenvector for λ, then so is any multiple $k\mathbf{v}$.
Eigenvalues and eigenvectors: example

Find the eigenvalues and eigenvectors of $A = \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix}$

\[
|A - \lambda I| = \begin{vmatrix} 5-\lambda & 3 \\ 3 & 5-\lambda \end{vmatrix} = (5-\lambda)^2 - 9 = \lambda^2 - 10\lambda + 25 - 9
\]

\[
= \lambda^2 - 10\lambda + 16 = 0
\]

\[
(\lambda - 8)(\lambda - 2) = 0
\]

So eigenvalues are $\lambda_1 = 8$ and $\lambda_2 = 2$
For $\lambda_1 = 8$

$$A - 8I = \begin{bmatrix} 5 & -8 & 3 \\ 3 & 5 & -8 \end{bmatrix} = \begin{bmatrix} -3 & 3 \\ 3 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}$$

So $v_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

For $\lambda_2 = 2$

$$A - 2I = \begin{bmatrix} 5 & -2 & 3 \\ 3 & 5 & -2 \end{bmatrix} = \begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$

So $v_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$
Diagonalization of a symmetric matrix

- If \(A \) is an \(n \times n \) symmetric square matrix, the eigenvalues are real.

- If the eigenvalues are also distinct, their eigenvectors are orthogonal.

- We can then scale the eigenvectors \(\mathbf{v}_i \) to ones of unit length \(\mathbf{u}_i \) and place them into an orthogonal matrix \(U = [\mathbf{u}_1 \mathbf{u}_2 \ldots \mathbf{u}_n] \).

- Then we can write a diagonal matrix \(\Lambda = U^T A U \) such that the diagonal entries of \(\Lambda \) are \(\lambda_1, \lambda_2, \ldots, \lambda_n \) in that order.
Diagonalization example

Diagonalize $A = \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix}$

$\lambda_1 = 8 \Rightarrow v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \Rightarrow u_1 = \frac{1}{\sqrt{2}} v_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

$\lambda_2 = 2 \Rightarrow v_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix} \Rightarrow u_2 = \frac{1}{\sqrt{2}} v_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$

$\begin{bmatrix} 8 & 0 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$