Recap

• (Ch 6) Drawing conclusions from a sample of the population
 • Calculating the standard error of the sample mean
 • Constructing confidence intervals around the sample mean

Today

• (Ch 6) Drawing conclusions from a sample of the population
 • Calculating the standard error for other statistics (e.g. sample median)
 • Constructing confidence intervals for other statistics (e.g. sample median)
• (Ch 7) Assessing the significance of evidence against a hypothesis
Calculating standard error of sample mean

• Calculate the unbiased estimate of the population standard deviation

\[
\text{stdunbiased}\{x\} = \sqrt{\frac{1}{N - 1} \sum_{x_i \in \text{sample}} (x_i - \text{mean}\{x_i\})^2}
\]

• The standard error is estimated as

\[
\text{stderr}\{x\} = \frac{\text{stdunbiased}\{x\}}{\sqrt{N}}
\]
Constructing confidence intervals for $N \geq 30$

- 68% confidence interval
 \[[\text{mean}(\{x\}) - \text{stderr}(\{x\}), \text{mean}(\{x\}) + \text{stderr}(\{x\})] \]

- 95% confidence interval
 \[[\text{mean}(\{x\}) - (2)\text{stderr}(\{x\}), \text{mean}(\{x\}) + (2)\text{stderr}(\{x\})] \]

- 99% confidence interval
 \[[\text{mean}(\{x\}) - (3)\text{stderr}(\{x\}), \text{mean}(\{x\}) + (3)\text{stderr}(\{x\})] \]
What does a 99% confidence interval mean?

- For 99% of the samples, if you construct the confidence interval in this way, the population mean will lie within the interval.

- It does **not** mean that the population mean lies in the interval with probability 99%.
Standard error: midterm grading example

The realized sample of scores is \(\{120, 130, 140, 140, 150\} \) with \(N = 5 \)

\[
\text{mean}(\{120, 130, 140, 140, 150\}) = 136
\]

\[
\text{stdunbiased}(\{x\}) = \sqrt{\frac{(120 - 136)^2 + (130 - 136)^2 + 2(140 - 136)^2 + (150 - 136)^2}{5 - 1}} = 11.4
\]

\[
\text{stderr}(\{x\}) = \frac{11.4}{\sqrt{5}} = 5.1
\]

So we estimate the population mean as 136 with standard error 5.1
Standard error: election polling example

<table>
<thead>
<tr>
<th>Poll</th>
<th>Dates</th>
<th>Pollster</th>
<th>Sample</th>
<th>Result</th>
<th>Net Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. House</td>
<td>IL-12</td>
<td>SEP 26-27</td>
<td>DCCC Targeting Team*</td>
<td>574 LV</td>
<td>Kelly 44% Bost 46%</td>
</tr>
<tr>
<td></td>
<td>IL-12</td>
<td>SEP 28-29</td>
<td>DCCC Targeting Team*</td>
<td>574 LV</td>
<td>Kelly 41% Bost 42%</td>
</tr>
<tr>
<td>Governor</td>
<td>III.</td>
<td>SEP 24-29</td>
<td>Southern Illinois University</td>
<td>715 LV</td>
<td>Pritzker 49% Rauner 27%</td>
</tr>
</tbody>
</table>

Source: fivethirtyeight.com

\[
\text{stdunbiased}\{x\} = \sqrt{\frac{715(0.49)(1-0.49)^2 + 715(0.51)(0-0.49)^2}{715-1}} = 0.50
\]

\[
\text{stderr}\{x\} = \frac{0.5}{\sqrt{715}} = 0.019
\]

So we estimate the population mean as 49% with standard error 1.9%
Confidence interval: election polling example

<table>
<thead>
<tr>
<th></th>
<th>DATES</th>
<th>POLLSTER</th>
<th>SAMPLE</th>
<th>RESULT</th>
<th>NET RESULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. House</td>
<td>* IL-12 SEP 26-27</td>
<td>DCCC Targeting Team*</td>
<td>574 LV</td>
<td>Kelly</td>
<td>44% - 46%</td>
</tr>
<tr>
<td></td>
<td>* IL-12 SEP 26-27</td>
<td>DCCC Targeting Team*</td>
<td>574 LV</td>
<td>Kelly</td>
<td>41% - 42%</td>
</tr>
<tr>
<td>Governor</td>
<td>* Ill. SEP 24-29</td>
<td>Southern Illinois University</td>
<td>715 LV</td>
<td>Pritzker</td>
<td>49% - 27%</td>
</tr>
</tbody>
</table>

Source: fivethirtyeight.com

We estimated the population mean as 49% with standard error 1.9%

The 99% confidence interval for Pritzker’s vote percentage is

\[[49\% - (3)1.9\%, 49\% + (3)1.9\%] = [43.3\%, 54.7\%] \]
Confidence intervals for other statistics

- **The bootstrap** is a method to construct confidence intervals for other statistics (besides the sample mean) for which we cannot derive analytical expressions.

- Bootstrapping a confidence interval for the sample median given a sample of N items
 - Create a bootstrap replicate by sampling N items from the original sample uniformly and **with replacement**
 - Calculate the sample median of the bootstrap replicate
 - Repeat the two steps above a large number of times
 - Plot the histogram of the sample medians and construct a confidence interval
Bootstrap median: midterm grading example

The realized sample of scores is \{120, 130, 140, 140, 150\} with \(N = 5\)

\[
\text{median}\{120, 130, 140, 140, 150\} = 140
\]

<table>
<thead>
<tr>
<th>Bootstrap replicate</th>
<th>Sample median</th>
</tr>
</thead>
<tbody>
<tr>
<td>{150, 150, 130, 130, 140}</td>
<td>140</td>
</tr>
<tr>
<td>{120, 120, 140, 140, 120}</td>
<td>120</td>
</tr>
<tr>
<td>{130, 140, 140, 150, 140}</td>
<td>140</td>
</tr>
<tr>
<td>{150, 120, 130, 130, 140}</td>
<td>130</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
</tr>
</tbody>
</table>
Bootstrap median: midterm grading example

Repeat a total of 10000 times and plot a histogram of sample medians

90% confidence interval for sample median
The scientific method

- Form a **hypothesis** about some phenomenon
- Design an experiment and collect data
- Reject the hypothesis if it is contradicted by the data
Hypothesis testing: election polling example

Hypothesis: Pritzker’s vote percentage is 53%

Experiment

<table>
<thead>
<tr>
<th>U.S. House</th>
<th>DATES</th>
<th>POLLSTER</th>
<th>SAMPLE</th>
<th>RESULT</th>
<th>NET RESULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>* IL-12</td>
<td>SEP 26-27</td>
<td>DCCC Targeting Team*</td>
<td>574 LV</td>
<td>Kelly 44% 46% Bost</td>
<td>Bost +2</td>
</tr>
<tr>
<td>* IL-12</td>
<td>SEP 26-27</td>
<td>DCCC Targeting Team*</td>
<td>574 LV</td>
<td>Kelly 41% 42% Bost</td>
<td>Bost +1</td>
</tr>
<tr>
<td>Governor</td>
<td>* III.</td>
<td>SEP 24-29</td>
<td>Southern Illinois University</td>
<td>715 LV</td>
<td>Pritzker 48% 27% Rauner</td>
</tr>
</tbody>
</table>

Should we reject the hypothesis based on this data?
Fraction of “less extreme” samples

• Assuming that the hypothesis is true, what fraction of samples would have had sample means less extreme than what we observed?

\[
\begin{align*}
0.49 & \quad 0.53 \\
\text{(sample mean)} & \quad -(\text{hypothesized value}) \\
\text{standard error} & \quad 0.019
\end{align*}
\]

• Define a test statistic \(g = \frac{\text{(sample mean)} - \text{(hypothesized value)}}{\text{standard error}} \)

• If \(N \geq 30 \), we can say \(g \) comes from a standard normal distribution

• So, the fraction of “less extreme” samples \(f = \frac{1}{\sqrt{2\pi}} \int_{-|g|}^{|g|} \exp \left(-\frac{x^2}{2} \right) dx \)
P-value: fraction of “more extreme” samples

• It is conventional in science to report the p-value of an experiment

\[p = 1 - f = 1 - \frac{1}{\sqrt{2\pi}} \int_{-|g|}^{|g|} \exp \left(-\frac{x^2}{2} \right) dx \]

• So, a p-value is the fraction of samples that would have had sample means more extreme than what we observed, assuming that the hypothesis is true

• By convention, if the p-value < 0.05, we should reject the hypothesis
P-value: election polling example

• Hypothesis: Pritzker’s vote percentage is 53%

• Recall that we calculated sample mean 49% and standard error 1.9%

• So the test statistic \(g = \frac{49 - 53}{1.9} = -2.11 \)

• And the p-value tells us to reject the hypothesis

\[
p = 1 - \frac{1}{\sqrt{2\pi}} \int_{-2.11}^{2.11} \exp\left(-\frac{x^2}{2}\right) dx = 0.035 < 0.05
\]
The use and misuse of p-values

- P-values in scientific practice
 - Scientists are usually trying to reject the null hypothesis, the hypothesis that there is no special phenomenon and the data are just random noise
 - So $p < 0.05$ means there may be an interesting phenomenon and it has been the standard for publication in many fields

- What’s wrong with using p-values in this way?
 - Rejecting the null hypothesis doesn’t mean that the proposed alternative hypothesis is true
 - $p < 0.05$ is arbitrary and gives a 1-in-20 chance of false positives
 - It encourages p-value hacking and has contributed to the replication crisis