Recap

• (Ch 3) Random outcomes and events

Today

• (Ch 4) Random variables
Conditional probability and independence

• The definition of conditional probability is

\[P(E_2|E_1) = \frac{P(E_1 \cap E_2)}{P(E_1)} \]

• If \(E_1 \) and \(E_2 \) are independent, then \(P(E_1 \cap E_2) = P(E_1)P(E_2) \), so

\[P(E_2|E_1) = P(E_2) \]
Random variables

• A random variable is a function that maps events to real numbers.

• Example: Toss a coin. Let random variable X be
 • 0 if the coin comes up heads
 • 1 if the coin comes up tails

 \[
 \text{Let } X = \begin{cases}
 0 & \text{with probability 0.5} \\
 1 & \text{with probability 0.5}
 \end{cases}
 \]

• Random variables have nothing to do with variables in a program, even though we might use a programming variable to represent a random variable.
Random variables: more examples

• Number of pairs in a hand of 5 cards
 • Let a single outcome be the hand of cards
 • Each outcome maps to a number from 0 to 2

• Number of electoral votes that a US presidential candidate will win
 • Let a single outcome be the list of votes or non-votes of all registered voters
 • Each outcome maps to a number from 0 to 538
Random variables and events

- Let X be a random variable

- The set of outcomes $\{A \mid X(A) = x\}$ is an event with probability $P(X = x)$

- Likewise, the set of outcomes $\{A \mid X(A) \leq x\}$ is an event with probability $P(X \leq x)$
Random variables and events: dice example

• Roll 2 three-sided dice

• How many outcomes?

• Define the following random variables
 • Let X be the value of die 1
 • Let Y be the value of die 2
 • Let sum $S = X + Y$
 • Let difference $D = X - Y$
Random variables and events: dice example

- Calculate the following probabilities

- \(P(X = 1) = \frac{1}{3} \)
- \(P(Y \leq 2) = \frac{2}{3} \)
- \(P(S = 5) = \frac{2}{9} \)
- \(P(D \leq -1) = \frac{8}{9} = \frac{1}{2} \)
Probability distribution

- $P(X = x)$ is called the **probability distribution** of X

- $P(X = x)$ is also denoted as $P(x)$ or $p(x)$

- $P(X = x) \geq 0$ for all values that X can take and is 0 everywhere else

- The sum of the probability distribution $\sum_x P(x) = 1$ because
 - $\{A \mid X(A) = x_i\}$ and $\{A \mid X(A) = x_j\}$ are disjoint for $x_i \neq x_j$
 - $\{A \mid X(A) = x_i\}$ cover the sample space Ω
Cumulative distribution function

- $P(X \leq x)$ is called the **cumulative distribution function** of X

- $P(X \leq x)$ is also denoted as $f(x)$

- $P(X \leq x)$ is a non-decreasing function of x
Distribution functions: dice example

\[P(S = s) = p(s) \]

\[P(S \leq s) = f(s) \]
Joint probability distribution

• The joint probability distribution of two random variables \(X \) and \(Y \) is \(P(\{X = x\} \cap \{Y = y\}) \), also denoted \(P(x, y) \) for short.

• We can recover the individual probability distributions \(P(x) \) and \(P(y) \) from the joint probability distribution as follows:

\[
P(x) = \sum_y P(x, y) \quad \text{and} \quad P(y) = \sum_x P(x, y)
\]

• The sum of the joint probability distribution \(\sum_y \sum_x P(x, y) = 1 \).
Joint probability distribution: dice example

<table>
<thead>
<tr>
<th></th>
<th>Y = 1</th>
<th>Y = 2</th>
<th>Y = 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>X = 1</td>
<td>$\frac{1}{9}$</td>
<td>$\frac{1}{9}$</td>
<td>$\frac{1}{9}$</td>
</tr>
<tr>
<td>X = 2</td>
<td>$\frac{1}{9}$</td>
<td>$\frac{1}{9}$</td>
<td>$\frac{1}{9}$</td>
</tr>
<tr>
<td>X = 3</td>
<td>$\frac{1}{9}$</td>
<td>$\frac{1}{9}$</td>
<td>$\frac{1}{9}$</td>
</tr>
</tbody>
</table>

$p(x)$ and $p(y)$ values:

<table>
<thead>
<tr>
<th></th>
<th>$p(x)$ = $\frac{1}{3}$</th>
<th>$p(x)$ = $\frac{1}{3}$</th>
<th>$p(x)$ = $\frac{1}{3}$</th>
</tr>
</thead>
</table>
Joint probability distribution: dice example

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
</tr>
</tbody>
</table>

- \(P(s,d) \)
- \(P(s) \)

\(P(d) \):
- 1/9
- 2/9
- 3/9
- 4/9
- 5/9

\(P(s) \):
- 1/4
- 1/4
- 3/4
- 3/4
- 1/4
- 1/4

1. 1/9
2. 2/9
3. 3/9
4. 4/9
5. 5/9
6. 6/9
Independence of random variables

- Random variables X and Y are independent if

$$P(x, y) = P(x)P(y) \text{ for all } x \text{ and } y$$

- For the dice example, are the following variables independent?

 - X and Y **Yes**
 - S and D **No** a.g. $P(s=2, d=-2) \neq P(s=2)P(d=-2)$
Conditional probability distribution

- The **conditional probability distribution** of X given Y is

\[P(x|y) = \frac{P(x, y)}{P(y)} \]

- For any given y, \(\sum_x P(x|y) = 1 \)

- If X and Y are independent, $P(x, y) = P(x)P(y)$, so $P(x|y) = P(x)$
Conditional distribution: dice example

\[
P(s|d) = \frac{P(s,d)}{P(d)}
\]

<table>
<thead>
<tr>
<th>P(s)</th>
<th>0</th>
<th>0</th>
<th>(\frac{1}{3})</th>
<th>0</th>
<th>0</th>
<th>(\frac{1}{9})</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(d)</td>
<td>(\frac{1}{9})</td>
<td>(\frac{1}{3})</td>
<td>(\frac{1}{3})</td>
<td>(\frac{2}{9})</td>
<td>(\frac{1}{9})</td>
<td></td>
</tr>
</tbody>
</table>
Bayes rule for random variables

• Bayes rule for events generalizes to random variables

\[P(x|y) = \frac{P(y|x)P(x)}{P(y)} = \frac{P(y|x)P(x)}{\sum_x P(y|x)P(x)} \]

• Let’s check Bayes rule for a case of the dice example

\[P(D = 0|S = 2) = \frac{\frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3}}{P(S = 2)} = 1 \]