CS 361: Probability & Statistics
Monty hall problem

- Recall the setup, there are 3 doors, behind two of them are indistinguishable goats, behind one is a car. You pick a door and win what’s behind it. You prefer to win a car to a goat.

- Let’s suppose you pick a door at random and before you open it, Monty announces that he will now open a door and show you a goat from among the doors you didn’t pick.

- After he does this, should you switch doors from your original pick to the one that you didn’t pick that is still closed?
Let’s call the door you picked door #1, the one the host opened door #2, and the one that you didn’t pick that is still closed door #3.

Let C_i be the event that the car is behind door i and H_j be the event that the host opened door j.

We want to compute $P(C_1 \mid H_2)$ and compare it to $P(C_3 \mid H_2)$ to see if we should switch.
Monty Hall

First we compute $P(C_1|H_2)$

\[
P(C_1|H_2) = \frac{P(H_2|C_1)P(C_1)}{P(H_2|C_1)P(C_1) + P(H_2|C_2)P(C_2) + P(H_2|C_3)P(C_3)}
\]

\[
= \frac{1/2 \times 1/2}{1/2 \times 1/2 + 1/3 \times 0 + 1/3 \times 1} = \frac{1/4}{1/4 + 0 + 1/3} = \frac{1}{3}
\]

Now let’s compute $P(C_3|H_2)$

\[
P(C_3|H_2) = \frac{P(H_2|C_3)P(C_3)}{P(H_2|C_1)P(C_1) + P(H_2|C_2)P(C_2) + P(H_2|C_3)P(C_3)}
\]

\[
= \frac{1 \times 1/3}{1/2 \times 1/2 + 1/3 \times 0 + 1/3 \times 1} = \frac{1/3}{1/4 + 0 + 1/3} = \frac{2}{3}
\]
Takeaway

❖ See the text for other ways to set up Monty Hall and why it matters
❖ Conditional probabilities can be quite counterintuitive
Random Variables
Random variables

- We have figured out how to talk about assigning probabilities to outcomes and events
- We now look at a way of associating numbers with experiments, numbers that change as a function of the outcome of the experiment
Random variables

Definition: 5.1 Discrete random variable

Given a sample space Ω, a set of events \mathcal{F}, and a probability function P, and a countable set of of real numbers D, a discrete random variable is a function with domain Ω and range D.

Thus, for every outcome ω a random variable X associates to that outcome a real number $X(\omega)$.
Flip a coin and observe the result. If it is heads, we report 1, if it is tails, we report 0. This is a random variable
We flip a coin 32 times, recording a 1 when we see heads and a 0 when we see tails. This produces a 32 bit random number which is a random variable.
Example

- We flip a coin 32 times, reporting 1 for heads and 0 for tails. The parity of this 32 bit number is a random variable
Example

- We draw a hand of 5 cards. The number of pairs in the hand is a random variable (0, 1, or 2)
The relationship to events

Any value x of a random variable determines a set of outcomes, i.e. an event

$$\{ \omega : X(\omega) = x \}$$

So we will make reference to the probability that the random variable X is equal to x

$$P(\{ \omega : X(\omega) = x \})$$

And we will use shorthand $P(X=x)$ or just $P(x)$ to express this
Example

We draw a hand of 5 cards, let X be the random variable that indicates how many pairs are in the hand.

So X maps from outcomes (which hand we draw) to a countable set D of numbers $\{0,1,2\}$.

Saying $X=1$ defines a set of outcomes or an event: in this event are any outcome or hand with one pair in it.

Thus $P(X=1)$ is exactly the kind of thing we’ve already been studying. $P(X=1)$ asks what is the probability of some event.
Another event of interest is

$$\{ \omega : X(\omega) \leq x \}$$

We usually write the probability of this event

$$P(\{ \omega : X(\omega) \leq x \})$$

With the following shorthand

$$P(X \leq x)$$
Random variables: two observations

Since X is a function from the sample space to the set D, every possible outcome is mapped to a number in D

Also observe that if $x_0 \neq x_1$ then the events

$$\{X = x_0\} \quad \text{and} \quad \{X = x_1\}$$

are disjoint

And if we were to iterate over every number in D, the union of these disjoint events is the sample space, e.g.

$$\bigcup_{x \in D} \{X = x\} = \Omega$$
Distributions

The function of x given by

$$P(X = x)$$

is called the **probability distribution**
of the discrete random variable X

P is defined for each value that X
can take and is 0 everywhere else

This function might also be written as $p(x)$
Distributions

We also give a special name to the function of x given by

$$P(X \leq x)$$

We call this the **cumulative distribution function** of the discrete random variable X

Note that this is a non-decreasing function of x

Cumulative distributions are often written with an f. So we may have

$$f(x) = P(\{X \leq x\})$$
Example

Flip a biased coin 2 times.

P(H) = p and P(T) = 1-p.

Record a 1 when a toss comes up heads and a 0 when it comes up tails.

What is the probability distribution and the cumulative distribution for this random variable?

This gives a random variable that is a binary number taking on values 00,01,10,11 or 0, 1, 2, 3

<table>
<thead>
<tr>
<th>x</th>
<th>p(x)</th>
<th>f(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(1 – p)^2</td>
<td>(1 – p)^2</td>
</tr>
<tr>
<td>1</td>
<td>(1 – p)p</td>
<td>(1 – p)</td>
</tr>
<tr>
<td>2</td>
<td>p(1 – p)</td>
<td>1 – p^2</td>
</tr>
<tr>
<td>3</td>
<td>p^2</td>
<td>1</td>
</tr>
</tbody>
</table>
Example

Flip a biased coin.

P(H) = p and P(T) = 1-p.

If the coin comes up heads, you pay me q

If it comes up tails, I pay you r

The amount of money that changes hands is an RV

What is the probability distribution for this random variable? From my perspective

P(X=q) = p
P(X=-r) = (1-p)
Random variables

- Using our “two observations” from a few slides back, notice that since the values in D give disjoint events whose union is the sample space, we can get the following result from what we know about probabilities:

\[\sum_{x \in D} P(x) = 1 \]
If we consider two random variables X and Y, it makes sense to think about the event generated by asking which outcomes give $X=x$ and $Y=y$.

We could write the probability of this event as

$$P(\{X = x\} \cap \{Y = y\})$$

But we will usually use shorthand and write $P(x, y)$.
Joint probability

- For a discrete X and Y, we can think of $P(x,y)$ as a table with an entry for each value that X and Y can take on.
- This table is referred to as the joint probability distribution of X and Y.
Conditional probability

- Using our prior formulation of conditional probability we know that

\[P(\{X = x\} \mid \{Y = y\})P(\{Y = y\}) = P(\{X = x\} \cap \{Y = y\}) \]

- Using our shorthand we write this as

\[P(x \mid y)P(y) = P(x, y) \]
Bayes’ rule

An equation that we derived before for events can also be written in terms of random variables and has a special name due to its wide applicability.

Definition: 5.4 Bayes’ rule

\[P(x|y) = \frac{P(y|x)P(x)}{P(y)} \]
Joint probability

- Again using our two observations about the values of a random variable giving us disjoint events whose union is the sample space, observe the following about joint probabilities for a given value of y

$$\sum_{x \in D_x} P(x|y) = 1$$

- Write this out in terms of events if you want to convince yourself
Another insight we can derive from our two observations is that if we have a joint distribution, we can recover the individual distributions of X and Y. This is often referred to as the marginal distribution of X, when we derive it from a joint distribution of X and Y.
Definition: 5.5 Independent random variables

The random variables X and Y are independent if the events $\{X = x\}$ and $\{Y = y\}$ are independent. This means that

$$P(\{X = x\} \cap \{Y = y\}) = P(\{X = x\})P(\{Y = y\}),$$

which we can rewrite as

$$P(x, y) = P(x)P(y)$$
Throw two dice. The number of spots on the first die is a random variable X, the number on the second is a random variable Y. Let S be the random variable given by $S = X + Y$ and $D = X - Y$

What is the probability distribution of S? And what is the probability distribution of D?

<table>
<thead>
<tr>
<th>S</th>
<th>$P(s)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1/36</td>
</tr>
<tr>
<td>3</td>
<td>2/36</td>
</tr>
<tr>
<td>4</td>
<td>3/36</td>
</tr>
<tr>
<td>5</td>
<td>4/36</td>
</tr>
<tr>
<td>6</td>
<td>5/36</td>
</tr>
<tr>
<td>7</td>
<td>6/36</td>
</tr>
<tr>
<td>8</td>
<td>5/36</td>
</tr>
<tr>
<td>9</td>
<td>4/36</td>
</tr>
<tr>
<td>10</td>
<td>3/36</td>
</tr>
<tr>
<td>11</td>
<td>2/36</td>
</tr>
<tr>
<td>12</td>
<td>1/36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D</th>
<th>$P(d)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5</td>
<td>1/36</td>
</tr>
<tr>
<td>-4</td>
<td>2/36</td>
</tr>
<tr>
<td>-3</td>
<td>3/36</td>
</tr>
<tr>
<td>-2</td>
<td>4/36</td>
</tr>
<tr>
<td>-1</td>
<td>5/36</td>
</tr>
<tr>
<td>0</td>
<td>6/36</td>
</tr>
<tr>
<td>1</td>
<td>5/36</td>
</tr>
<tr>
<td>2</td>
<td>4/36</td>
</tr>
<tr>
<td>3</td>
<td>3/36</td>
</tr>
<tr>
<td>4</td>
<td>2/36</td>
</tr>
<tr>
<td>5</td>
<td>1/36</td>
</tr>
</tbody>
</table>
Throw two dice. The number of spots on the first die is a random variable \(X \), the number on the second is a random variable \(Y \). Let \(S \) be the random variable given by \(S = X + Y \) and \(D = X - Y \).

What does is the joint distribution of \(S \) and \(D \)?

TABLE 5.1: A table of the joint probability distribution of \(S \) (vertical axis; scale 2, \ldots, 12) and \(D \) (horizontal axis; scale \(-5, \ldots, 5\)) from example 5.4
Sum and difference, independence

Throw two dice. The number of spots on the first die is a random variable X, the number on the second is a random variable Y. Let S be the random variable given by $S = X + Y$ and $D = X - Y$

Are X and Y independent?

How about S and D?
Sum and difference, conditional

Throw two dice. The number of spots on the first die is a random variable X, the number on the second is a random variable Y. Let S be the random variable given by $S = X + Y$ and $D = X - Y$.

What is $P(S \mid D=0)$?
What is $P(D \mid S=11)$?

<table>
<thead>
<tr>
<th>S</th>
<th>$P(s)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>(1/6)</td>
</tr>
<tr>
<td>4</td>
<td>(1/6)</td>
</tr>
<tr>
<td>6</td>
<td>(1/6)</td>
</tr>
<tr>
<td>8</td>
<td>(1/6)</td>
</tr>
<tr>
<td>10</td>
<td>(1/6)</td>
</tr>
<tr>
<td>12</td>
<td>(1/6)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D</th>
<th>$P(d)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>(1/2)</td>
</tr>
<tr>
<td>1</td>
<td>(1/2)</td>
</tr>
</tbody>
</table>