Probability and Statistics 2

for Computer Science

“A major use of probability in
statistical inference is the
updating of probabilities
when certain events are
observed” — Prof. M.H.
DeGroot

Credit: wikipedia
e
Hongye Liu, Teaching Assistant Prof, CS361, UIUC, 9.10.2020
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Counting: how many ways?
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Warm up: which is larger?

P(ANB) ~ P(A[B)
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Conditional Probability
¢ The probability of A given B

P(AN B)
P(B)
P(B) #0

P(A|B) =

The line-crossed area is the
new sample space for
conditional P(A| B)




Joint Probability Calculation

— P(AN B) = P(A|B)P(B)
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Bayes rule

Given the definition of conditional
probability and the symmetry of joint
probability, we have:

P(A|B)P(B) = P(AN B) = P(BN A) = P(B|A)P(A)

And it leads to the famous Bayes rule:
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Total probability
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Total probability general form

PLR)= X P(Bf\Aa‘)
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Total probability:
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Bayes rule using total prob.
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Bayes rule: rare disease test

There is a blood test for a rare disease. The

frequency of the disease is 1/100,000. If one has it,
the test confirms it with probability 0.95. If one

doesn't have, the test gives false positive with
probability 0.001. What is P(D|T'), the probability
of having disease given a positive test result?

T|\D)P(D)
P(T)

B P(T|D)P(D)

- P(T|D)P(D) + P(T|D¢)P(D¢)

Using total prob.

P(D|T) = il




Bayes rule: rare disease test

There is a blood test for a rare disease. The
frequency of the disease is 1/100,000. If one has it,
the test confirms it with probabilit@lﬁ one
doesn't have, the test gives false positive with
probability 0.001. What is P(D|T), the probability
of having disease given a positive test result?
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One definition:
PLALE). = P(A) or
(B|A) = P(B)

Whether A happened doesn’t change
the probability of B and vice versa




Independence: example

Suppose that we have a fair coin and it is
tossed twice. let A be the event “the
first toss is a head” and B the event “the

two outcomes are the same.”
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These two events are independent ? /




Alternative definition

LHS by definition P(A‘B) — P(A)
\:> P(;l(;)B) = P(A)

~P(An B) =(P(4)P(B)| ¥
PcAN rb)-_—_épcM@)Zp (1)




Testing Independence:

Suppose you draw one card from a

standard deck of cards. E, is the event

that the card is a King, Queen or Jack. E,

is the event the card is a Heart. Are E,

and E, independent?  [tany=pww pui%)
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Independence vs Disjoint

Q. Two disjoint events that have
robability> O are certainly

{dj;ggmiggt o each other. ¢
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Independence of empty event

Q. Any event is independent of
empty event B.

A)True B=¢
B. False P(@)=-o
J;n(k
B popnrA,



Pairwise independence is not mutual

independence in larger context
A VA- V A3 (/A’f = J&é
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Mutual independence

Mutual independence of a collection
of events A;, Ay, As... A, 15 :

P(A;(A;n/'\kﬂ - Ap) = P (AL)
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Probability using the property of

Independence: Airline overbooking (1)

An airline has a flight with 6 seats. They
always sell 7 tickets for this flight. If ticket
holders show up independently with
probability p, what is the probability that
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Probability using the property of

Independence: Airline overbooking (1)

An airline has a flight with 6 seats. They
always sell 7 tickets for this flight. If ticket
holders show up independently with

probability p, what is the probability that
the flight is overbooked ?

P( 7 passengers showed up)



Probability using the property of

Independence: Airline overbooking (2)

An airline has a flight with 6 seats. They
always sell 8 tickets for this flight. If ticket

holders show up independently with
probability p, what is the@:@that
exactly 6 people showed yp?

e 2 U A (L-pI(-p)
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Probability using the property of

Independence: Airline overbooking (3)

An airline has a flight with 6 seats. They
always sell 8 tickets for this flight. If ticket
holders show up independently with
probability p, what is the probability that
the flight is overbooked ?

P( overbooked) =



Probability using the property of

Independence: Airline overbooking (4)

An airline has a flight witk@seats. They
always selI@(t>s) tickets for this flight. If
ticket holders show up independently
with probability p, what is the probability
that exactly;people showed up?

P( exactly u people showed up)
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Probability using the property of

Independence: Airline overbooking (5)

An airline has a flight with's ,seats. They
always sell t (t>s) tickets for this flight. If
ticket holders show up independently
with probability p, what is the probability

that the flight iSO)e,dm&d;?
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Condition may affect Independence

Assume event A and B are pairwise

independent
7 Given C, A and B are
\ not independent
‘ any more because
0 they become
disjoint




Conditional Independence

Event A and B are conditional
independent given event Cif the
following is true.

P(AN B|C) = P(A|C)P(B|C)

See an example in Degroot et al. Example 2.2.10



HW3

,\/\.

Finish Chapter 3 of the textbook

Next time: Random variable



Additional References

Charles M. Grinstead and J. Laurie Snell
"Introduction to Probability”

Morris H. Degroot and Mark J. Schervish
"Probability and Statistics”



Another counting problem

There are several (>10) freshmen,
sophomores, juniors and seniors in a
dormitory. In how many ways can a team of 10
students be chosen to represent the dorm?
There are no distinction to make between each
individual student other than their year in
school.



See you next time







