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Last	time	

✺  StochasOc	Gradient	Descent	

✺ Naïve	Bayesian	Classifier	



Objectives	

✺  Linear	regression	
✺  The	problem	
✺  The	least	square	soluOon	
✺  The	training	and	predicOon	
✺  The	R-squared	for	the	evaluaOon	of	
the	fit.	

	



Some	popular	topics	in	Ngram	



Regression	models	are	Machine	learning	
methods	

✺ Regression	models	have	been	
around	for	a	while	

✺ Dr.	Kelvin	Murphy’s	Machine	
Learning	book	has	3+	chapters	on	
regression	



Wait,	have	we	seen	the	linear	regression	
before?	



It’s	about	Relationship	between	data	
features	

✺  Example:	does	the	Height	of	people	relate	to	
people’s	weight?		

✺  x	:		HIGHT,		y:	WEIGHT	



Chicago	social	economic	census	

✺  The	census	included	77	communiOes	in	Chicago	

✺  The	census	evaluated	the	average	hardship	index	of	the	residents	

✺  The	census	evaluated	the	following	parameters	for	each	
community:	
✺  PERCENT_OF_HOUSING_CROWDED	
✺  PERCENT_HOUSEHOLD_BELOW_POVERTY	
✺  PERCENT_AGED_16p_UNEMPLOYED	
✺  PERCENT_AGED_25p_WITHOUT_HIGH_SCHOOL_DIPLOMA	
✺  PERCENT_AGED_UNDER_18_OR_OVER_64	
✺  PER_CAPITA_INCOME	

	
Given	a	new	community	and	its	parameters,		
can	you	predict	its	average	hardship	index	with	all	these	parameters?	



The	regression	problem	

✺  Given	a	set	of	feature	vectors	xi	where	each	has	a	
numerical	label	yi,	we	want	to	train	a	model	that	can	
map	unlabeled	vectors	to	numerical	values	

✺  We	can	think	of	regression	as	fiang	a	line	(or	curve	
or	hyperplane,	etc.)	to	data	

✺  Regression	is	like	classificaOon	except	that	the	
predicOon	target	is	a	number,	not	a	class	label.	
(PredicOng	class	label	can	be	considered	a	special	
case	of	regression)	



Some	terminology	

✺  Suppose	the	dataset													consists	of	N	labeled	
items	

✺  If	we	represent	the	dataset	as	a	table	
✺  The	d	columns	represenOng								are	called	

explanatory	variables	
✺  The	numerical	column	y	

1	 3	 0	

2	 3	 2	

3	 6	 5	

yx
(1)

x
(2)

{(x, y)}

(xi, yi)

x
(j)

{x}

is	called	the	dependent	
variable		



Variables	of	the	Chicago	census	

[1]	"PERCENT_OF_HOUSING_CROWDED"																				
[2]"PERCENT_HOUSEHOLDS_BELOW_POVERTY"													
[3]	"PERCENT_AGED_16p_UNEMPLOYED"																			
[4]"PERCENT_AGED_25p_WITHOUT_HIGH_SCHOOL_DI
PLOMA"	
[5]	"PERCENT_AGED_UNDER_18_OR_OVER_64"														
[6]"PER_CAPITA_INCOME"																												
[7]	"HardshipIndex"		



Which	is	the	dependent	variable	in	the	
census	example?	

A.	"PERCENT_OF_HOUSING_CROWDED"			
B.	"PERCENT_AGED_25p_WITHOUT_HIGH_SCHOOL_DIPLOMA”	
C.	"HardshipIndex”		
D.	"PERCENT_AGED_UNDER_18_OR_OVER_64"														



Linear	model	

✺  We	begin	by	modeling	y	as	a	linear	funcOon	of														
plus	randomness	

✺  	In	vector	notaOon:	

1	 3	 0	

2	 3	 2	

3	 6	 5	

yx
(1)

x
(2)

x
(j)

y = x
(1)β1 + x

(2)β2 + ...+ x
(d)βd + ξ

Where				is	a	zero-mean	random	variable	that	
represents	model	error		

ξ

y = x
Tβ + ξ

Where					is	the	d-dimensional	
vector	of	coefficients	that	we	train	

β



Each	data	item	gives	an	equation	

1	 3	 0	

2	 3	 2	

3	 6	 5	

yx
(1)

x
(2)

y = x
Tβ + ξ = x

(1)β1 + x
(2)β2 + ξ✺  The	model:		

Training	data	



Which	together	form	a	matrix	equation	

1	 3	 0	

2	 3	 2	

3	 6	 5	

yx
(1)

x
(2)

y = x
Tβ + ξ = x

(1)β1 + x
(2)β2 + ξ✺  The	model		

Training	data	
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Which	together	form	a	matrix	equation	

1	 3	 0	

2	 3	 2	

3	 6	 5	

yx
(1)

x
(2)

y = x
Tβ + ξ = x

(1)β1 + x
(2)β2 + ξ✺  The	model		

Training	data	
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β1
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+

⎡

⎣

ξ1
ξ2
ξ3

⎤

⎦

y = X · β + e



Q.	What’s	the	dimension	of	matrix	X?	

A. 	N		×	d	
B. 	d		×	N	
C. 	N		×	N	
D. 	d	×		d	



Training	the	model	is	to	choose	β	
✺  Given	a	training	dataset													,	we	want	to	fit	a	

model		

✺  Define																				and																				and		

✺  To	train	the	model,	we	need	to	choose						that	makes					
small	in	the	matrix	equaOon				

{(x, y)}

y = x
Tβ + ξ

y =

⎡

⎢

⎣

y1
.
.
.

yN

⎤

⎥

⎦ X =

⎡
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x
T
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.

x
T
N

⎤

⎥
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e =
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⎣

ξ1
.
.
.

ξN

⎤
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β e

y = X · β + e



Training	using	least	squares	
✺  In	the	least	squares	method,	we	aim	to	minimize		

✺  DifferenOaOng	with	respect	to					and	seang	to	zero		

✺  If													is	inverOble,	the	least	squares	esOmate	of	
the	coefficient	is:		

β

∥e∥2

∥e∥2 = ∥y −Xβ∥2 = (y −Xβ)T (y −Xβ)

X
T
Xβ −X

T
y = 0

X
T
X

β̂ = (XT
X)−1

X
T
y



Derivation	of	least	square	solution	

(1)	



Convex	set	and	convex	function	
✺  If	a	set	is	convex,	

any	line	connecOng	
two	points	in	the	
set	is	completely	
included	in	the	set		

✺  A	convex	funcOon:	
the	area	above	the	
curve	is	convex		

✺  The	least	square	
funcOon	is	convex	

Credit:	Dr.	Kelvin	Murphy	

f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y)



What’s	the	dimension	of	matrix	XTX?	

A. 	N		×	d	
B. 	d		×	N	
C. 	N		×	N	
D. 	d	×		d	



Is	this	statement	true?	

A. 	TRUE	
B. 	FALSE	

If	the	matrix	XTX	does	NOT	have	zero	valued	eigenvalues,	
it	is	inverOble.	



Training	using	least	squares	example	

✺  Model:		

1	 3	 0	

2	 3	 2	

3	 6	 5	

yx
(1)

x
(2)

y = x
Tβ + ξ = x

(1)β1 + x
(2)β2 + ξ

Training	data	
β̂ = (XT

X)−1
X

T
y

β̂1 = 2

β̂2 = −

1

3

=

[

2

−

1

3

]



Prediction	

✺  If	we	train	the	model	coefficients					,	we	can	predict			
from		

✺  In	the	model																																												with		

✺  The	predicOon	for																			is		

✺  The	predicOon	for																			is		

β̂ y
p

0

x0

y = x
(1)β1 + x

(2)β2 + ξ β̂ =

[
2

−

1

3

]
y
p
0 = x

T
0 β̂

x0 =

[

2

1

]

x0 =

[

0

0

]

y
p

0

y
p

0



A	linear	model	with	constant	offset	

✺  The	problem	with	the	model																																												

is:it	always	predicts						=	0	if	the	input	vector	

✺  	Let’s	add	a	constant	offset						to	the	model	

y = x
(1)β1 + x

(2)β2 + ξ

y
p

0 x0 =

[

0

0

]

y = β0 + x
(1)β1 + x

(2)β2 + ξ

β0



Training	and	prediction	with	constant	
offset	

1	

1	 1	 3	 0	

1	 2	 3	 2	

1	 3	 6	 5	

x
(1)

x
(2) y

y = β0 + x
(1)β1 + x

(2)β2 + ξ = x
Tβ + ξ✺  The	model		

✺  Training	data:	

✺  For		

[

1 x
(1)

x
(2)
]

β̂ = (XT
X)−1

X
T
y =
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]

⎡
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2
1

3

⎤

⎦ = −3



Variance	of	the	linear	regression	model	

✺  The	least	squares	esOmate	saOsfies	this	property		

✺  The	random	error	is	uncorrelated	to	the	least	square	
soluOon	of	linear	combinaOon	of	explanatory	
variables.	

		

var({yi}) = var({xT

i β̂}) + var({ξi})



Variance	of	the	linear	regression	model:	
proof	
✺  The	least	squares	esOmate	saOsfies	this	property		

		

var({yi}) = var({xT

i β̂}) + var({ξi})

y = X · β + e

var[y] = (1/N)(y − y)T (y − y)

Proof:	

var[y] = (1/N)([Xβ̂ −Xβ̂] + [e− e])T ([Xβ̂ −Xβ̂] + [e− e])

⌃	



Variance	of	the	linear	regression	model:	
proof	
✺  The	least	squares	esOmate	saOsfies	this	property		

		

var({yi}) = var({xT

i β̂}) + var({ξi})

Proof:	
var[y] = (1/N)([Xβ̂ −Xβ̂] + [e− e])T ([Xβ̂ −Xβ̂] + [e− e])



Variance	of	the	linear	regression	model:	
proof	
✺  The	least	squares	esOmate	saOsfies	this	property		

		

var({yi}) = var({xT

i β̂}) + var({ξi})

Proof:	
var[y] = (1/N)([Xβ̂ −Xβ̂] + [e− e])T ([Xβ̂ −Xβ̂] + [e− e])

var[y] = (1/N)([Xβ̂−Xβ̂]T [Xβ̂−Xβ̂]+2[e−e]T [Xβ̂−Xβ̂]+[e−e]T [e−e])



Variance	of	the	linear	regression	model:	
proof	
✺  The	least	squares	esOmate	saOsfies	this	property		

		

var({yi}) = var({xT

i β̂}) + var({ξi})

Proof:	
var[y] = (1/N)([Xβ̂ −Xβ̂] + [e− e])T ([Xβ̂ −Xβ̂] + [e− e])

var[y] = (1/N)([Xβ̂−Xβ̂]T [Xβ̂−Xβ̂]+2[e−e]T [Xβ̂−Xβ̂]+[e−e]T [e−e])

Because																				;																																;		e = 0 e
T
1 = 0e

T
Xβ̂ = 0



Variance	of	the	linear	regression	model:	
proof	
✺  The	least	squares	esOmate	saOsfies	this	property		

		

var({yi}) = var({xT

i β̂}) + var({ξi})

Proof:	
var[y] = (1/N)([Xβ̂ −Xβ̂] + [e− e])T ([Xβ̂ −Xβ̂] + [e− e])

var[y] = (1/N)([Xβ̂−Xβ̂]T [Xβ̂−Xβ̂]+2[e−e]T [Xβ̂−Xβ̂]+[e−e]T [e−e])

var[y] = (1/N)([Xβ̂ −Xβ̂]T [Xβ̂ −Xβ̂] + [e− e]T [e− e])

Because																				;																																	and		e = 0 e
T
1 = 0e

T
Xβ̂ = 0 Due	to	Least	square	minimized	



Variance	of	the	linear	regression	model:	
proof	
✺  The	least	squares	esOmate	saOsfies	this	property		

		

var({yi}) = var({xT

i β̂}) + var({ξi})

Proof:	
var[y] = (1/N)([Xβ̂ −Xβ̂] + [e− e])T ([Xβ̂ −Xβ̂] + [e− e])

var[y] = (1/N)([Xβ̂−Xβ̂]T [Xβ̂−Xβ̂]+2[e−e]T [Xβ̂−Xβ̂]+[e−e]T [e−e])

Because																				;																																	and		e = 0 e
T
1 = 0

var[y] = (1/N)([Xβ̂ −Xβ̂]T [Xβ̂ −Xβ̂] + [e− e]T [e− e])

e
T
Xβ̂ = 0

= var[Xβ̂] + var[e]

Due	to	Least	square	minimized	

var[y]



Evaluating	models	using	R-squared	

✺  The	least	squares	esOmate	saOsfies	this	property		

✺  This	property	gives	us	an	evaluaOon	metric	called	R-
squared	

✺  We	have																											with	a	larger	value	meaning	a	
berer	fit.	

✺  		

var({yi}) = var({xT

i β̂}) + var({ξi})

R2 =
var({xT

i β̂})

var({yi})

0 ≤ R
2 ≤ 1



Q:	What	is	R-squared	if	there	is	only	one	
explanatory	variable	in	the	model?	



Q:	What	is	R-squared	if	there	is	only	one	
explanatory	variable	in	the	model?	

R-squared	would	be	the	correlaQon	
coefficient	squared	(textbook	pgs	43-44)	



R-squared	examples	



Comparing	our	example	models	

1	 3	 0	 1	

2	 3	 2	 3	

3	 6	 5	 4	

x
(1)

x
(2) y x

T β̂ 1	

1	 1	 3	 0	 0	

1	 2	 3	 2	 2	

1	 3	 6	 5	 5	

x
(1)

x
(2) y x

T β̂

y = β0 + x
(1)β1 + x

(2)β2 + ξy = x
(1)β1 + x

(2)β2 + ξ

β̂ =

[
2

−

1

3

]
β̂ =

⎡

⎣
−3

2
1

3

⎤

⎦



Linear	regression	model	for	the	Chicago	
census	data	



Residual	is	normally	distributed?	

The	Q-Q	plot	of	
the	residuals	is	
roughly	normal	



Prediction	for	another	community	

[1]	"PERCENT_OF_HOUSING_CROWDED"																					
[2]"PERCENT_HOUSEHOLDS_BELOW_POVERTY
"													
[3]	"PERCENT_AGED_16p_UNEMPLOYED"																			
[4]"PERCENT_AGED_25p_WITHOUT_HIGH_SC
HOOL_DIPLOMA"	
[5]	
"PERCENT_AGED_UNDER_18_OR_OVER_64"														
[6]"PER_CAPITA_INCOME"																												

4.7	

19.7	

12.9	

19.5	

33.5	

Log(28202)	

Predicted	hardship	index:	41.46038	
Note:	maximum	of	hardship	index	in	the	training	data	is	98,	minimum	is	1	



The	clusters	of	the	Chicago	communities:	
clusters	and	hardship	
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Hardship	index	of	communiQes	



The	clusters	of	the	Chicago	communities:	
per	capital	income	and	hardship	

PER_CAPITAL_INCOME	

Hardship	index	of	communiQes	
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The	clusters	of	the	Chicago	communities:	
without	diploma	and	hardship	

Hardship	index	of	communiQes	
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Assignments	

✺ Read	Chapter	13	of	the	textbook	

✺ Next	Ome:	More	on	linear	regression	

	



Additional	References	

✺  Robert	V.	Hogg,	Elliot	A.	Tanis	and	Dale	L.	
Zimmerman.	“Probability	and	StaOsOcal	
Inference”		

✺  Kelvin	Murphy,	“Machine	learning,	A	
ProbabilisOc	perspecOve”	



See	you	next	time	

See 
You! 


