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Stochastic Gradient Descent

Naive Bayesian Classifier



Linear regression

% The problem

% The least square solution
% The training and prediction

% The R-squared for the evaluation of
the fit.
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Regression models are Machine learning

methods

Regression models have been
around for a while

Dr. Kelvin Murphy’s Machine
Learning book has 3+ chapters on
regression



Wait, have we seen the linear regression

before?




It's about Relationship between data

features

Example: does the Height of people relate to

people’s weight?
IDNO BODYFAT DENSITY AGE WEIGHT HEIGHT
1 12.6 1.0708 23 154.25 67.75
2 6.5 1.0853 22 173.25 72.25
3 24.6 1.0414 22 154.00 66.25
< 10.5 1.0751 26 184,75 72.25
5 27.8 1.0340 24 184,25 71.25
6 20.6 1.0502 24 210.25 74.75
7 15.0 1.0549 26 181.00 69.75
8 12.8 1.0704 25 176.00 72.50
S 5.1 1.0500 25 151.00 74.00
10 12.0 1.0722 23 158.25 73.50

X : HIGHT, y: WEIGHT



Chicago social economic census

The census included 77 communities in Chicago
The census evaluated the average hardship index of the residents

The census evaluated the following parameters for each
community:

PERCENT_OF_HOUSING_CROWDED
PERCENT_HOUSEHOLD_BELOW_POVERTY
PERCENT_AGED_16p_UNEMPLOYED
PERCENT_AGED_25p_WITHOUT_HIGH_SCHOOL_DIPLOMA
PERCENT_AGED_UNDER_18_OR_OVER_64

%  PER_CAPITA_INCOME

* Kk Kk Kk ¥

Given a new community and its parameters,
can you predict its average hardship index with all these parameters?



The regression problem

Given a set of feature vectors x, where each has a
numerical label y,, we want to train a model that can
map unlabeled vectors to numerical values

We can think of regression as fitting a line (or curve
or hyperplane, etc.) to data

Regression is like classification except that the
prediction target is a number, not a class label.
(Predicting class label can be considered a special
case of regression)



Some terminology

Suppose the dataset{(x,y)}consists of N labeled
iternS(Xf,;7 yz)
If we represent the dataset as a table

% The d columns representing {x}are called
explanatory variables x\9)

% The numerical columny < x@ g
is called the dependent
. 1 3 0
variable
2 3 2



Variables of the Chicago census

] "PERCENT_OF _HOUSING_CROWDED"
]"PERCENT_HOUSEHOLDS_BELOW_POVERTY"

] "PERCENT_AGED_16p UNEMPLOYED"
4]"PERCENT_AGED _25p WITHOUT_HIGH_SCHOOL_DI
PLOMA"

5] "PERCENT_AGED _UNDER_18 OR_OVER_64"
6]"PER_CAPITA_INCOME"

7] "HardshipIindex"

LN R




Which is the dependent variable in the

census example?

A. "PERCENT_OF_HOUSING_CROWDED"

B. "PERCENT_AGED 25p WITHOUT_HIGH_SCHOOL_DIPLOMA”
C. "HardshipIndex”

D. "PERCENT_AGED UNDER_18 OR_OVER_64"



Linear model

We begin by modeling y as a linear function of x )
plus randomness

y=xMB + x84+ .+ x84 ¢
Where ¢ is a zero-mean random variable that
represents model error

In vector notation: <O [ @] 4
¥= x' 3 +¢ 1 3 0
Where 3 is the d-dimensional 2 3 2

vector of coefficients that we train 3 6 5



Each data item gives an equation

The model: y =x'8+ ¢ = xVp3, + xP 8, + ¢

Training data

O] @] 4
1 3 0
2 3 2



Which together form a matrix equation

The model y=x"8+¢=xMp +xP8, +¢

0 1 3 8, &
Training data 21 = |2 3 51 + &2
5 3 6| U ¢
ORI RV N I I A 63_
1 3 0
2 3 2



Which together form a matrix equation

The model y=x"8+¢=xMp +xP8, +¢

0 1 3 8, &
Training data 21 = |2 3 51 + &2
(1) (2) O 3 6] - - §3
xP  x@& y L4 LT >
1 3 0
2 3 2 y = X - ,3 + e



Q. What's the dimension of matrix X?

A.N xd
B.d xN
C.N xN
D.dx d



Training the model is to choose [3

Given a training dataset{(x,y)}, we want to fit a
model y =x' B3+ ¢

U1 xT” &
Definey=| : |andX =| : | and e=
YN | _X%_ _fN_

To train the model, we need to choose 3 that makes e
small in the matrix equation y=X -8 +e



Training using least squares

In the least squares method, we aim to minimize ||el”
el = lly = XB8I" = (v - XB)"(y — XB)
Differentiating with respect to 3 and setting to zero
X'XB-X'y=0

If X7 X isinvertible, the least squares estimate of
the coefficient is:

S

B=(X"X)"X"y



Derivation of least square solution

{(el{%:(gfx/gﬂc?-)%)
= YTy -ATxTy =Y Txp ATXTXA )
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Convex set and convex function

If a set is convex,

any line connecting <:> @

two points in the

set is completely " o

included in the set  rgure 7.4 @ tustration of a conves set. ®) Mustration of a nonconvex set

A convex function:
the area above the

curve is convex
FOz+ (1= Ny) < Mf(x) + (1 =N f(y)

The least square o o

function is convex
Credit: Dr. Kelvin Murphy



What's the dimension of matrix X'X?

A.N xd
B.d xN
C.N xN
D.dx d



Is this statement true?

If the matrix X™X does NOT have zero valued eigenvalues,
it is invertible.

A. TRUE
B. FALSE



Training using least squares example

Model: y = XT,B + & = X(l)ﬁl + X(2)52 + &

S _ 2
B=(X"X)"'X"y= [_;]
Training data J

xM x@® oy ~



Prediction

If we train the model coefficients B , we can predict %
from X
p_ JT7
Yo = Xo 3

In the model y = xM 3, +x® 8, + ¢ with G =

2
% The prediction for xo = 1] is Yo

% The prediction for x5 = 8] is o



A linear model with constant offset

The problem with the model y = xY 3, +x® 8, 4 ¢

0
0

. : p : :
is:it always predicts Yo = 0 if the input vector Xy =

Let’s add a constant offset 3, to the model

y = Bo X(l)ﬁl X(2)52 §




Training and prediction with constant

offset

The model y = Gy + X(l)ﬂl + X(2)52 + & = x' 3 + &

Training data: [1 (1) x(Q)]

—3
1 1 3 o0 B=(X"X)"'XTy = | 2
1 2 3 2 i % |
1 3 6 5 ~ _
- —3
For Xg = Yo = [1 0 O] 2 | =9
0 1
A ES




Variance of the linear regression model

The least squares estimate satisfies this property

var({y;}) = var({x! B}) + var({&})

The random error is uncorrelated to the least square
solution of linear combination of explanatory
variables.



Variance of the linear regression model:

proof

The least squares estimate satisfies this property
var({y:}) = var({x; B}) +var({&})

Proof: Z/:X°B‘|‘e
varly] = (1/N)(y —=9)" (y — )

varly] = (1/N)([X3 — XB] +[e — &))" ([XB — XB] + [e — @)




Variance of the linear regression model:

proof

The least squares estimate satisfies this property

var({y;}) = var({x! B}) + var({&})

Proof: - -
varly) = (1/N)([X5 — X5] + [e — &))" (X5 — XJ] + [e — &)



Variance of the linear regression model:

proof

The least squares estimate satisfies this property

var({y;}) = var({x! B}) + var({&})

Proof:

var|y

var|y|

— (1/N)([XB — XB] + [e—&)" (X3 — XB] + [e —&])

— (1/N)([X B—XB|"[X f—X Bl+2[e—e] " [X f— X ] +[e—e]"[e—a])



Variance of the linear regression model:

proof

The least squares estimate satisfies this property

var({y;}) = var({x! B}) + var({&})

Proof:

var|y

var|y|

— (1/N)([XB = X8+ e —e))"([XB — XB] + [e —d])
— (1/N)([XB—X B[ X B—X B]+2le—e]"[X B—X B]+[e—e]" [e—e])

Because € = () ; eTXB:(); ell =0



Variance of the linear regression model:

proof

The least squares estimate satisfies this property

var({y;}) = var({x! B}) + var({&})

Proof: -
= (1/N)([XB— XP] +[e — &))" ([XB — XB] + [e — €])

var|y

varly) = (1/N)([X 3—X 3" [X 3— X B|+2le—e]” [X B— X 5]+[e—e]” [e—e])
Because € = () ; eTX,B\ — (0 and e!'1 = ()< Due to Least square minimized

varly] = (1/N)([X8 — XB|T[XB — X5] + [e — & [e — &)



Variance of the linear regression model:

proof

The least squares estimate satisfies this property

var({y;}) = var({x! B}) + var({&})

Proof: -
= (1/N)([XB— XP] +[e — &))" ([XB — XB] + [e — €])

var|y

varly) = (1/N)([X 3—X 3" [X 3— X B|+2le—e]” [X B— X 5]+[e—e]” [e—e])
Because € = () ; eTX,B\ — (0 and e!'1 = ()< Due to Least square minimized

varly] = (1/N)([X8 — XB|T[X5 — X5] + [e — & [e — &)

AN

var|y| = var[X 8] + var|e]




Evaluating models using R-squared

The least squares estimate satisfies this property

var({y;}) = var({x! B}) + var({&})

This property gives us an evaluation metric called R-

squared R
~ var({x7B})

var(1Yi})

R2

We have 0 < R?* <1 with alarger value meaning a
better fit.



Q: What is R-squared if there is only one

explanatory variable in the model?



Q: What is R-squared if there is only one

explanatory variable in the model?

R-squared would be the correlation
coefficient squared (textbook pgs 43-44)



R-squared examples

Temperature

Chirp frequency vs temperature in crickets

S - RA2=0.68

Heart rate (bpm)

14 15 16 17 18 19 20
Frequency

90

Heart rate vs temperature in humans

Temperature (F)



y=xWg +x3p, 4 ¢

1 3 0 1
2 3 2 3
3 6 5 4

y=0o+xp +xP8 +¢

B =
< x@ y <73
1 3 0 0
2 3 2 2

Comparing our example models



Linear regression model for the Chicago

census data

Call:
Im(formula = HardshipIndex ~ ., data = dat)

Estimate Std. Error t value Pr(>1tl)

Residuals:

Min 1Q Median 3Q Max
-15.7157 -1.9230 ©.1301 1.9810 8.6719
Coefficients:
(Intercept) 105.1394
PERCENT_OF_HOUSING_CROWDED 0.7189
PERCENT_HOUSEHOLDS_BELOW_POVERTY 0.6665
PERCENT_AGED_16p_UNEMPLOYED 0.8023
PERCENT_AGED_25p_WITHOUT_HIGH_SCHOOL_DIPLOMA 0.7751
PERCENT_AGED_UNDER_18_OR_OVER_64 0.4807

PER_CAPITA_INCOME -11.8819

37.3622
0.2753
0.0781
0.1350
0.1063
0.1202
3.1888

Signif. codes: @ “***’ @.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 * ’ 1

Residual standard error: 3.9 on 70 degrees of freedom
Multiple R-squared: 0.983, Adjusted R-squared: 0.9815
F-statistic: 673.9 on 6 and 70 DF, p-value: < 2.2e-16

2.814 0.006346
2.612 0.011014
8.534 1.90e-12
5.941 9.93e-08
7.293 3.64e-10
3.998 0.000156
-3.726 ©.000391

¥ k%
3Kk
3%k %k
¥ % K
¥ %k



Residual is normally distributed?

Normal Q-Q Plot

The Q-Q plot of
the residuals is
roughly normal

Sample Quantiles
-10 5

-15

-2 -1 0 1 2

Theoretical Quantiles



Prediction for another community

[1] "PERCENT_OF_HOUSING_CROWDED" 4.7
[2]"PERCENT_HOUSEHOLDS_BELOW_POVERTY

" 19.7

[3] "PERCENT_AGED_16p UNEMPLOYED" 12.9
[4]"PERCENT_AGED 25p WITHOUT HIGH_SC

HOOL_DIPLOMA" 19.5

[5] 33.5
"PERCENT_AGED_UNDER_18 OR_OVER_64"
[6]"PER_CAPITA_INCOME" Log(28202)

Predicted hardship index: 41.46038
Note: maximum of hardship index in the training data is 98, minimum is 1



The clusters of the Chicago communities:

clusters and hardship

Clusters of community

Hardship index of communities

Hardship

Hardship index




The clusters of the Chicago communities:

per capital income and hardship

PER_CAPITAL_INCOME
Heatmap of PER_CAPITA_IN

ITA_INCOME (log scale)

Hardship index of communities
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The clusters of the Chicago communities:

without diploma and hardship

PERCENT_AGED_25p_ WITHOUT
_HIGH_SCHOOL_DIPLOMA

'J\/@ R\ Hardship index of communities
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Read Chapter 13 of the textbook

Next time: More on linear regression



Additional References

Robert V. Hogg, Elliot A. Tanis and Dale L.
Zimmerman. “Probability and Statistical
Inference”

Kelvin Murphy, “Machine learning, A
Probabilistic perspective”



See you next time




