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“…many	problems	are	naturally	
classifica4on	problems”---Prof.	
Forsyth	

Hongye	Liu,	Teaching	Assistant	Prof,	CS361,	UIUC,	11.5.2020	
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Last	time	
� Demo	of	Principal	Component	
Analysis	

� Introduc4on	to	classifica4on	



Objectives	
� Decision	tree	(II)	

� Random	forest	

� Support	Vector	Machine	(I)	
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Classifiers	
�  Why	do	we	need	classifiers?	

�  What	do	we	use	to	quan4fy	the	performance	of	a	classifier?	

�  What	is	the	baseline	accuracy	of	a	5-class	classifier	using	0-1	
loss	func4on?	

�  What’s	valida4on	and	cross-valida4on	in	classifica4on?	

prediction
patterns efficient

confusion matrix
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Performance	of	a	multiclass	classifier	
�  Assuming	there	are	c	classes:	

�  The	class	confusion	matrix	is	
c	×	c	

�  Under	the	0-1	loss	func4on	
accuracy=	

ie.	in	the	right	example,	accuracy	=	
32/38=84%	

�  The	baseline	accuracy	is	1/c.	

sum of diagonal terms

sum of all terms

Source:	scikit-learn	
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Cross - validation

Split the data in mnl : tiple ways
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Q1.	Cross-validation	

Cross-valida+on	is	a	method	used	to	prevent	
overficng	in	classifica4on.	

A.  TRUE	

B.  FALSE	

D



Decision(tree:(object(classification(

�  The$object$classifica4on$decision(tree$can$classify$
objects$into$mul4ple$classes$using$sequence$of$
simple$tests.$It$will$naturally$grow$into$a$tree.$
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Training(a(decision(tree:(example(

�  The$“Iris”$data$set$

Setosa$ Versicolor$

Virginica$
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Training	a	decision	tree	

�  Choose	a	dimension/feature	and	a	split	

�  Split	the	training	Data	into	lef-	and	right-	
child	subsets	Dl	and	Dr	

�  Repeat	the	two	steps	above	recursively	on	
each	child	

�  Stop	the	recursion	based	on	some	condi4ons	

�  Label	the	leaves	with	class	labels	

left right



Classifying	with	a	decision	tree:	example	

�  The	“Iris”	data	set	

Setosa	 Versicolor	

Virginica	✓

✓



Choosing	a	split	
�  An	informa4ve	split	

makes	the	subsets	
more	concentrated	
and	reduces	
uncertainty	about	
class	labels	

			
	
	
	
	
	
	
	
	
	
	
	
	



Choosing	a	split	
�  An	informa4ve	split	
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Choosing	a	split	
�  An	informa4ve	split	

makes	the	subsets	
more	concentrated	
and	reduces	
uncertainty	about	
class	labels	
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Which	is	more	informative?	



Quantifying	uncertainty	using	entropy	

�  We	can	measure	uncertainty	as	the	
number	of	bits	of	informa4on	needed	
to	dis4nguish	between	classes	in	a	
dataset	(first	introduced	by	Claude	
Shannon)	
�  We	need	Log2	2	=1	bit	to	

dis4nguish	2	equal	classes	
�  We	need	Log2	4	=2	bit	to	

dis4nguish	4	equal	classes	

Claude	Shannon	(1916-2001)	



Quantifying	uncertainty	using	entropy	

�  Entropy	(Shannon	entropy)	is	the	measure	of	
uncertainty	for	a	general	distribu4on	
�  If	class	i	contains	a	frac4on	P(i)	of	the	data,	we	need																		

bits	for	that	class	
�  The	entropy	H(D)	of	a	dataset	is	defined	as	the	weighted	

mean	of	entropy	for	every	class:	

H(D) =
c∑

i=1

P (i)log2
1

P (i)

log2
1

P (i)
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Entropy:	before	the	split	
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Entropy:	examples	
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Entropy:	examples	
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Information	gain	of	a	split		

�  The	informa4on	gain	of	a	split	is	the	amount	of	
entropy	that	was	reduced	on	average	afer	the	split	

	

�  where	
�  ND	is	the	number	of	items	in	the	dataset	D	
�  NDl	is	the	number	of	items	in	the	lef-child	dataset	Dl	
�  NDr	is	the	number	of	items	in	the	lef-child	dataset	Dr	

I = H(D)− (
NDl

ND

H(Dl) +
NDr

ND

H(Dr))



Information	gain:	examples	
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Q.	Is	the	splitting	method		global	
optimum?	

A. 		Yes	
B. 		No	

←
locally decided

feature
° 0 Specific
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greedy .



How	to	choose	a	dimension	and	split	

�  If	there	are	d	dimensions,	choose	approximately						
of	them	as	candidates	at	random	

�  For	each	candidate,	find	the	split	that	maximizes	the	
informa4on	gain	

�  Choose	the	best	overall	dimension	and	split	

�  Note	that	splicng	can	be	generalized	to	categorical	
features	for	which	there	is	no	natural	ordering	of	the	
data	

√

d



When	to	stop	growing	the	decision	tree?	

�  Growing	the	tree	too	deep	can	lead	to	
overficng	to	the	training	data	

�  Stop	recursion	on	a	data	subset	if	any	of	the	
following	occurs:	
�  All	items	in	the	data	subset	are	in	the	same	class	
�  The	data	subset	becomes	smaller	than	a	predetermined	

size	
�  A	predetermined	maximum	tree	depth	has	been	reached.	



How	to	label	the	leaves	of	a	decision	tree	

�  A	leaf	will	usually	have	a	data	subset	containing	
many	class	labels		

�  Choose	the	class	that	has	the	most	items	in	the	
subset	

�  Alterna4vely,	label	the	leaf	with	the	number	it	
contains	in	each	class	for	a	probabilis4c	“sof”	
classifica4on.	

hard

Ci ca Cs leaf node

Tells
Cl cu Cy



Pros	and	Cons	of	a	decision	tree	

�  Pros:	

�  Cons:	

Intuitive. easy co implement .

low cost → fast

Discrete b Conti Rv .

Decision Boundary
Not an accurate

overtilting .



Training,	evaluation	and	classification	

�  Build	the	random	forest	by	training	each	decision	tree	on	a	
random	subset	with	replacement	from	the	training	data	and	
subset	of	features	are	also	randomly	selected---	“Bagging”	

�  Evaluate	the	random	forest	by	tes4ng	on	its	out-of-bag	
items	

�  Classify	by	merging	the	classifica4ons	of	individual	decision	
trees	
�  By	simple	vote	
�  Or	by	adding	sof	classifica4ons	together	and	then	take	a	

vote	

- Ia
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An	example	of	bagging	

Drawing	random	samples	
from	our	training	set	with	
replacement.	E.g.,	if	our	
training	set	consists	of	7	
training	samples,	our	
bootstrap	samples	(here:	
n=7)	can	look	as	follows,	
where	C1,	C2,	…	Cm	shall	
symbolize	the	decision	
tree	classifiers.	

Sample	
indices	

Bagging	
Round	1	

Bagging	
Round	2	

…	 Bagging	
Round	M	

1	 2	 7	

2	 2	 3	

3	 1	 2	

4	 3	 1	

5	 4	 1	

6	 7	 7	

7	 2	 1	

C1	 C2	
d--9

random
seieztgwt d=9

features



Pros	and	Cons	of	Random	forest	

�  Pros:	

�  Cons:	

More accurate usually

less likely to be overtittihg .

relative longer , more cost in

computing



Q2.	Do	you	think	random	forest	will	
always	outperform	simple	decision	tree?		

A. 		Yes	
B. 		No	 www.r

related

E) trees

by using
different

subsets of d

d = ?



Considerations	in	choosing	a	classifier	

�  When	solving	a	classifica4on	problem,	it	is	good	to	
try	several	techniques.	

�  Criteria	to	consider	in	choosing	the	classifier	include	
* Accuracy

* Speed g
training for the model

classification given
new drag

* flexibility ( variety of
data

.

gull us

* Interpretation big
)

* scaling effect .



Support	Vector	Machine	(SVM)	overview	

�  The	Decision	boundary	and	func4on	of	a	
Support	Vector	Machine	

�  Loss	func4on	(cost	func4on	in	the	book)	

�  Training	

�  Valida4on	

�  Extension	to	mul4class	classifica4on	

←
←



SVM	problem	formulation	

�  At	first	we	assume	a	binary	classifica4on	problem	

�  The	training	set	consists	of	N	items	
�  Feature	vectors	xi	of	dimension	d	
�  Corresponding	class	labels		yi ∈ {±1}

�  We	can	picture	the	training	
data	as	a	d-dimensional	
scaner	plot	with	colored	
labels	
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Decision	boundary	of	SVM	

�  SVM	uses	a	hyperplane	as	its	
decision	boundary	

�  The	decision	boundary	is:	

�  In	vector	nota4on,	the	
hyperplane	can	be	wrinen	as:	
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Q3.	How	many	solutions	can	we	have	for	
the	decision	boundary?	

a
T
x+ b = 0

x
(1)

x
(2)

A. 	One	
B. 	Several	
C. 	Infinite	" H



Classification	function	of	SVM	

�  SVM	assigns	a	class	label	to	a	
feature	vector	according	to	the	
following	rule:	

�  In	other	words,	the	classifica4on	
func4on	is:	

a
T
x+ b = 0

x
(1)

x
(2)

�  Note	that		
�  If																						is	small,	then									was	close	to	the	decision	

boundary	
�  If																						is	large,	then									was	far	from	the	decision	

boundary		

+1	if		
-1		if	

sign(aT
xi + b)

a
T
xi + b ≥ 0

a
T
xi + b < 0

∣

∣a
T
xi + b

∣

∣

∣

∣a
T
xi + b

∣

∣

xi

xi



What	if	there	is	no	clean	cut	boundary?	

�  Some	boundaries	are	bener	
than	others	for	the	training	data	

�  Some	boundaries	are	likely	more	
robust	for	run-4me	data	

�  We	need	to	a	quan4ta4ve	
measure	to	decide	about	the	
boundary	

�  The	loss	func+on	can	help	
decide	if	one	boundary	is	bener	
than	others	

a
T
x+ b = 0

x
(1)

x
(2)



Loss	function	1	

�  For	any	given	feature	vector							with	class	label																		,	
we	want		
�  Zero	loss	if								is	classified	correctly	
�  Posi4ve	loss	if							is	misclassified	
�  If						is	misclassified,	more	loss	is	assigned	if	it’s	further	away	

from	the	boundary	

�  This	loss	func4on	1	meets	the	criteria	above:	

�  Training	error	cost	

max(0,−yi(a
T
xi + b))

S(a, b) =
1

N

N∑

i=1

max(0,−yi(a
T
xi + b))

xi

xi

xi

xi

yi ∈ {±1}

Loss	

yi(a
T
xi + b)

sign(aT
xi + b) = yi

sign(aT
xi + b) != yiI

-

y
=



Q4.	What’s	the	value	of	this	function		?	

A.		0.		
B.		others.	

max(0,−yi(a
T
xi + b)) if		 sign(aT

xi + b) = yi

a



Q5.	What’s	the	value	of	this	function		?	

A.		0.		
B.		A	value	greater		
than	or	equal	to	0.	

max(0,−yi(a
T
xi + b)) if		 sign(aT

xi + b) != yi

a



The	problem	with	loss	function	1	

�  Loss	func4on1	does	not	dis4nguish	between	the	following	
decision	boundaries	if	they	both	classify						correctly.	
�  One	passes	the	two	classes	closely	
�  One	that	passes	with	a	wider	margin	

Credit:	Kelvin	Murphy		

xi

�  But	leaving	a	larger	margin	
gives	robustness	for	run-4me	
data-	the	large	margin	
principle	

✔	



Q6.	Wondering	what	does		
	“support	vector”	mean?	

A.		Yes.		
B.		No.	

Support	vectors	are	those	data	points	in	the	training	data	that	uniquely	
define	the	decision	boundary	
*



Q7.	SVM	classification	is	faster	than	
decision	tree	in	terms	of	time	complexity	

A.		TRUE.		
B.		FALSE.	
e



Loss	function	2:	the	hinge	loss	

�  We	want	to	impose	a	small	posi4ve	loss	if								is	correctly	
classified	but	close	to	the	boundary	

�  The	hinge	loss	func4on	meets	the	criteria	above:	

�  Training	error	cost	

xi

Loss	

yi(a
T
xi + b)

S(a, b) =
1

N

N∑

i=1

max(0, 1− yi(a
T
xi + b))

max(0, 1− yi(a
T
xi + b))

1	HE tin



Loss	function	2:	the	hinge	loss	

�  We	want	to	impose	a	small	posi4ve	loss	if								is	correctly	
classified	but	close	to	the	boundary	

�  The	hinge	loss	func4on	meets	the	criteria	above:	

�  Training	error	cost	

xi

Loss	

yi(a
T
xi + b)

S(a, b) =
1

N

N∑

i=1

max(0, 1− yi(a
T
xi + b))

max(0, 1− yi(a
T
xi + b))

1	



The	problem	with	loss	function	2	

�  Loss	func4on	2	favors	decision	boundaries	that	have	large								
because	increasing										can	zero	out	the	loss	for	a	correctly	
classified							near	the	boundary.	

	

�  But	large										makes	the	classifica4on	func4on														
extremely	sensi4ve	to	small	changes	in							and	make	it	less	
robust	to	run-4me	data.	

�  So	small										is	bener.	

xi

xi

‖a‖
‖a‖

‖a‖

‖a‖

sign(aT
xi + b)



Assignments	

� Read	Chapter	11	of	the	textbook	

� Next	4me:	SVM-regulariza4on,	
Stochas4c	descent	
	



Additional	References	

✺  Robert	V.	Hogg,	Elliot	A.	Tanis	and	Dale	L.	
Zimmerman.	“Probability	and	Sta4s4cal	
Inference”		

� Morris	H.	Degroot	and	Mark	J.	Schervish	
"Probability	and	Sta4s4cs”	

�  Kelvin	Murphy,	“Machine	learning,	A	
Probabilis4c	perspec4ve”	



See	you	next	time	

See 
You! 


