Today

• (Ch 11) Learning to classify
 • Nearest neighbors classifier
 • Evaluating a classifier
 • Naïve Bayes classifier

The next two lectures

• (Ch 11) Learning to classify
 • Support vector machine (SVM) classifier
 • Random forest classifier
Learning to classify

Given a set of feature vectors \mathbf{x}_i, where each has a class label y_i, we want to train a classifier that can map unlabeled vectors to labels.
Binary classifiers

- A binary classifier maps each feature vector to one of two classes

- For example, you can train a classifier to:
 - Look at a Twitter user’s posts, time of posting, followers, etc. to predict whether the user is a bot
 - Look at a credit card transaction’s amount, merchant, time, country, etc. to predict whether it is fraudulent
 - Look at a segment of DNA’s sequence of bases to predict whether the segment is coding or non-coding (that is, whether the segment of DNA has a known biological function)
Multiclass classifiers

• A multiclass classifier maps to one of **three or more** classes

• For example, you can train a classifier to:
 • Look at a patient’s current symptoms, lab test results, medical record, etc.
 to predict a diagnosis
 • Look at an image of a ZIP code to predict which ZIP it is
Nearest neighbors classifier

• Given an unlabeled feature vector \mathbf{x}
 • Calculate the distance from \mathbf{x} to each labeled feature vector \mathbf{x}_i
 • Find the closest labeled \mathbf{x}_i
 • Assign the same label to \mathbf{x}

• Practical issues
 • We need a distance metric
 • We should first standardize the data
 • Classification complexity grows linearly in number of labeled feature vectors

Variants of nearest neighbors classifier

• In k-nearest neighbors, the classifier:
 • Looks at the k nearest labeled feature vectors x_i
 • Assigns a label to x based on a majority vote

\[
\begin{align*}
 k &= 3 \Rightarrow O := \triangle \\
 k &= 5 \Rightarrow O := \square
\end{align*}
\]

• In (k, l)-nearest neighbors, the classifier:
 • Looks at the k nearest labeled feature vectors x_i
 • Assigns a label to x if at least l of them agree on a label

How do we know if our classifier is good?

- We want the classifier to avoid making classification mistakes on unlabeled data that we will only see at run-time

- Problem 1: some mistakes may be more costly than others

 We can tabulate different types of error and define a **loss function**

- Problem 2: we will never know the true labels of the run-time data

 We must separate the labeled data into a **training set** and a **validation/test set**
Performance of a binary classifier

- A binary classifier can make two types of mistake
 - **False positive**: the classifier assigns a positive label when the truth is negative
 - **False negative**: the other way

- Sometimes one type of error is more costly
 - Pregnancy test
 - Death penalty trial

- We can tabulate the performance in a **class confusion matrix**

Source: rasbt.github.io
Binary classifier with 0-1 loss function

- A **loss function** assigns costs to mistakes

- The 0-1 loss function treats FPs and FNs the same
 - It assigns loss 1 to every mistake
 - It assigns loss 0 to every correct decision

- Under the 0-1 loss function

 \[
 \text{accuracy} = \frac{TP+TN}{TP+TN+FP+FN} \quad \text{and} \quad \text{error} = 1 - \text{accuracy}
 \]

- The baseline accuracy is 50%, which we get by classifying randomly
Performance of a multiclass classifier

Assuming there are c classes:

- The class confusion matrix is $c \times c$
- Under the 0-1 loss function

$$\text{accuracy} = \frac{\text{sum of diagonal terms}}{\text{sum of all terms}}$$

- The baseline accuracy is $\frac{1}{c}$

Source: qingkaikong.blogspot.com
Training set vs. validation/test set

• We expect a classifier to perform worse on run-time data than on the labeled data used for training
 • Sometimes it will perform much worse: an effect called **overfitting**
 • An extreme example: a classifier that classifies correctly if the input feature vector is in the training set, but otherwise makes a random guess

• To protect against overfitting, we separate the labeled data
 • The **training set** is for training the classifier
 • The **validation/test set** is for evaluating the performance on unused data

• It is common to reserve 10% to 20% of the data for validation
Cross-validation

- If we don’t want to “waste” labeled data on validation, we can use cross-validation to see if our training methodology is sound.

- Split the labeled data into training and validation sets in multiple ways.

- For each split (called a **fold**):
 - train a classifier on the training set
 - evaluate its accuracy on the validation set

- Average the accuracy to evaluate the training methodology.
Naïve Bayes classifier: a probabilistic method

• Training
 • Use the training data \{ (x_i, y_i) \} to estimate a probability model \(P(y|x) \)
 • Assume that the features of \{x\} are conditionally independent given the class label \(y \)

\[
P(x|y) = \prod_{j=1}^{d} P(x^{(j)}|y)
\]

• Classification
 • Assign the label \(\arg \max_y P(y|x) \) to feature vector \(x \)
Naïve Bayes model

$$\arg \max_y P(y|x)$$

$$= \arg \max_y \frac{P(x|y)P(y)}{P(x)}$$

$$= \arg \max_y P(x|y)P(y)$$

$$= \arg \max_y \left[\prod_{j=1}^d P(x^{(j)}|y) \right] P(y)$$

$$= \arg \max_y \left[\sum_{j=1}^d \log P(x^{(j)}|y) \right] + \log P(y)$$

Bayes rule

$P(x)$ does not depend on y

Naïve assumption

The final expression avoids numerical issues related to tiny probabilities
Modeling the prior and the likelihoods

- Model the prior $P(y)$ based on the frequency of y in the training set
 - For a binary classifier, this model is a Bernoulli random variable

- Model each likelihood $P(x^{(j)}|y)$ by:
 - Selecting an appropriate family of distributions
 - Normal for real-valued numerical data
 - Poisson for counts in fixed intervals
 - Etc.
 - Fitting the parameters of the distribution using MLE from Chapter 9
Naïve Bayes training example

Training data

<table>
<thead>
<tr>
<th>(x^{(1)})</th>
<th>(x^{(2)})</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>1.0</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>0.0</td>
<td>10</td>
<td>-1</td>
</tr>
<tr>
<td>-3.0</td>
<td>14</td>
<td>-1</td>
</tr>
</tbody>
</table>

Modeling \(P(x^{(1)}|y) \) as normal
- \(P(x^{(1)}|y = 1) \)
 - \(\mu_{MLE} = \frac{3.5+1.0}{2} = 2.25 \)
 - \(\sigma_{MLE} = 1.25 \)
- \(P(x^{(1)}|y = -1) \)
 - \(\mu_{MLE} = -1.5 \)
 - \(\sigma_{MLE} = 1.5 \)

Modeling \(P(x^{(2)}|y) \) as Poisson
- \(P(x^{(2)}|y = 1) \)
 - \(\lambda_{MLE} = \frac{10+8}{2} = 9 \)
- \(P(x^{(2)}|y = -1) \)
 - \(\lambda_{MLE} = 12 \)

Modeling \(P(y) \) as Bernoulli
- \(P(y = 1) = \frac{2}{4} = 0.5 \)
- \(P(y = -1) = 0.5 \)