Recap

• (Ch 4) Random variables
 • Probability distribution
 • Joint probability distribution
 • Conditional probability distribution

Today

• (Ch 4) Random variables
 • Expected value, variance and covariance
 • Towards the weak law of large numbers
Expected value

• The **expected value** of a random variable X is

$$E[X] = \sum_x xP(x)$$

• The expected value is a weighted average of the values taken by X
Expected value: gambling example

• Let’s bet on a coin toss
 • It comes up heads with probability p and tails with probability $1 - p$
 • If it comes up heads I pay you $10; otherwise, you pay me $10

• For what values of p is this a good game for you?
Expected value as mean

• Suppose we have a data set \(\{x_i\} \) of \(N \) data points. Let’s build an empirical probability distribution from the data set by assigning each data point with probability \(\frac{1}{N} \).

\[
E[X] = \sum_i x_i P(x_i) = \frac{1}{N} \sum_i x_i = \text{mean}(\{x_i\})
\]

• The expected value is also called the mean
Linearity properties of expected value

• For random variables X and Y and constant k

\[
E[X + Y] = E[X] + E[Y]
\]

\[
E[kX] = kE[X]
\]

• These properties follow from interpreting expected values as means of data sets
Expected value of a function of X

- If f is a function of a random variable X, then $Y = f(X)$ is a random variable too.

- The **expected value** of $Y = f(X)$ is

$$E[Y] = E[f(X)] = \sum_x f(x)P(x)$$
Expected value: online gambling example

Let’s make the same bet as before, but now you pay a 10% fee on all transactions. For what values of p is this a good game for you?

X is your net winnings before fees. We already know that $E[X] = 20p - 10$
Variance and standard deviation

• The **variance** of a random variable X is

$$\text{var}[X] = E[(X - E[X])^2]$$

• The **standard deviation** of a random variable X is

$$\text{std}[X] = \sqrt{\text{var}[X]}$$
Properties of variance

• For random variables X and Y and constant k

\[\text{var}[k] = 0 \]

\[\text{var}[X] \geq 0 \]

\[\text{var}[kX] = k^2 \text{var}[X] \]

• If X and Y are independent

\[\text{var}[X + Y] = \text{var}[X] + \text{var}[Y] \]
A neater expression for variance

\[\text{var}[X] = E[(X - \mu)^2] \] \quad \text{where } \mu = E[X]
Variance: online gambling example

Let’s make the same bet as before. What is the variance of your net winnings before fees?

X is your net winnings before fees. We already know that $E[X] = 20p - 10$
Covariance

• The **covariance** of random variables X and Y is

\[
\text{cov}(X, Y) = E[(X - E[X])(Y - E[Y])]
\]

• Note that

\[
\text{cov}(X, X) = E[(X - E[X])^2] = \text{var}[X]
\]
Properties of covariance

• A neater expression for covariance (similar derivation as for variance)

\[
cov(X, Y) = E[XY] - E[X]E[Y]
\]

• If \(X\) and \(Y\) are independent, the following are proven in the book

\[
E[XY] = E[X]E[Y]
\]

\[
cov(X, Y) = 0
\]
Covariance: online gambling example

Let’s make the same bet as before. What is the covariance of your net winnings before fees and your net winnings after fees?

\(X \) and \(Y \) are your net winnings before and after fees. So, \(E[X] = 20p - 10 \) and \(E[Y] = 20p - 11 \).
Towards the weak law of large numbers

• The weak law says that if we repeat an experiment many times, the average of the observations will “converge” to the expected value

• For example, if you actually repeat the bet discussed in this lecture, your average winnings after fees will “converge” to $E[Y] = 20p - 11$

• The weak law justifies using simulations (instead of calculations) to estimate the expected values of random variables
Indicator functions

• An indicator function for an event E is a function of X such that

• The expected value of the indicator function is the probability of E
Markov’s inequality

• For any random variable X and constant $a > 0$

$$P(|X| \geq a) \leq \frac{E[|X|]}{a}$$

• In words, a random variable is unlikely to have an absolute value much larger than the mean of its absolute value

• For example, if $a = 10E[|X|]$

$$P(|X| \geq 10E[|X|]) \leq 0.1$$
Proof of Markov’s inequality
Chebyshev’s inequality

• For any random variable X and constant $a > 0$

$$P(|X - E[X]| \geq a) \leq \frac{\text{var}[X]}{a^2}$$

• To rephrase, let $a = k\sigma$ where $\sigma = \text{std}[X]$

$$P(|X - E[X]| \geq k\sigma) \leq \frac{1}{k^2}$$

• In words, the probability that X is greater than k standard deviations from the mean is small
Proof of Chebyshev’s inequality