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CS 361: Probability 
& Statistics

Independence & conditional 
probability 



Recall the definition for independence

❖ So we can suppose events are independent and compute 
probabilities

❖ Or we can test to see if two events are independent



Example
❖ Suppose we send a DNA sample to a lab that has a database 

containing DNA information on 20,000 people

❖ Suppose the lab can compare two samples and tell if there is a 
match but the test will incorrectly report a match occasionally

❖ Suppose the probability that this happens for a particular pair 
of DNA samples independently with probability of 0.0001

❖ If we know for sure that our sample doesn’t match any of the 
samples in their database, what’s the probability that the lab 
will tell us there is a match anyway?



Example
❖ P(lab error) = 1 - P(no error)

❖ We know the probability of an error on a single sample is 0.0001

❖ So the probability of no error on a single sample is 0.9999

❖ And in order for the event “no error” to occur there needs to be 
no error on all 20,000 samples in the database

❖ So P(no error) = (0.9999)^20000 or approximately 0.14

❖ So the probability that the lab will tell us they’ve found a match 
even when we know there isn’t one is 0.86



A quick review of counting

❖ How many different strings can we create by re-
arranging the letters in the word “horse”?

❖ 5! = 120

❖ How about the word “Illinois”?  



Coin flips
❖ If I flip a coin N times, how many outcomes have exactly k 

heads?

❖ Think of this as a string of (N-k) Ts and and k Hs that is N long

❖ Every re-arrangement of such a string is a valid run of this 
experiment

❖ The number of such re-arrangements is “N choose k”  
 
 



Overbooking 1
❖ An airline has a regular flight with 6 seats. They always sell 

7 tickets for this flight. If passengers show up 
independently with probability p what is the probability 
that the flight is overbooked?

❖ Can think of each individual as making a biased coin-flip. 
With probability p the person comes up S which means they 
show and with probability (1-p) they come up N or no-show

❖ There’s only one way to write a string of 7 S’s 

❖ So our probability is going to just be 



Overbooking 2

❖ An airline has a flight with 6 seats and it sells 8 tickets. 
Ticket holders show up independently with probability 
p. What is the probability that exactly 6 passengers 
show up?

❖ The event “6 passengers show up” can be written as the 
union of disjoint events

❖ In each disjoint event 6 of the 8 ticket holders show up



Overbooking 2

❖ Each disjoint event where 6 passengers shows up occurs 
with what probability?  

❖ And how many such events are there?  

❖ So the probability of the event that exactly six people 
show up is  



Overbooking 3
❖ An airline has a flight with 6 seats and it sells 8 tickets. 

Ticket holders show up independently with probability 
p. What is the probability that more than 6 people show 
up?



Overbooking 4
❖ An airline has a flight with s seats. They sell t tickets for this 

flight. Each person shows up independently with probability p. 
What is the probability that u passengers show up?

❖ How many disjoint events can we think of this event as consisting 
of? 

❖ Each with probability  

❖ Giving a probability of  



Overbooking 5

❖ An airline has a flight with s seats. They sell t tickets for 
this flight. Each person shows up independently with 
probability p. What is the probability that too many 
passengers show up?

❖ We are looking for  



Overbooking 5

❖ Or we could write this as  
 

❖ Or if we use our formula from the last example, we get a 
probability of overbooking given by  
 



Conditional probability

❖ Suppose we roll two dice and are interested in the 
probability that the sum is less than 6

❖ The probability of this event is 10/36

❖ If someone tells us that one of the dice rolled was a 4, 
this probability goes down to 1/6

❖ If someone tells us that instead one of the dice rolled 
was a 1, the probability would increase to 2/3



Conditional probability

❖ Knowing that an event has occurred might change the 
probability that we compute for some other event we 
haven’t yet observed

❖ The probability of an event B given an event A, written 
P(B|A) and called the conditional probability of B 
given A is how we capture this notion



Conditional probability

❖ Since event A is known to have occurred, the space of 
possible outcomes for the experiment, or the sample 
space, are only those in the event A

❖ The experiment outcome lies in A so P(B|A) is the 
probability that it also lies in 

❖ So we have  



Conditional probability

Let’s figure out what c is

For the event B, either it occurred or didn’t  
Even if we only consider the case where A  
occurred

Rewriting

So we get



Conditional probability
If we mess around with our  
original expression a little

We get

And

And this allows us to  
write our expression for  
conditional probability in  
the following useful way



Car factories
❖ There are two car factories, A and B. Factory A produces 

1000 cars, of which 10 are lemons. Factory B produces 2 
cars, and both are lemons. They all go to your local car 
dealership

❖ If you buy a car, what is the probability that it is a lemon?

❖ P(L) = 12/1002

❖ What is the probability a car came from factory B?

❖ P(B) = 2/1002



Car factories
We had P(L) = 12/1002 and P(B) = 2/1002 

Suppose you bought a car that was a lemon.  
What is the probability it came from factory 
B? I.e. what is P(B|L)?

So P(B|L) = 1/6



Total probability

Notice that

And that and

are disjoint events

Which means we can rewrite

Using the definition of conditional  
probability

More generally if some set of disjoint  
events “cover” A, e.g.

Then



False positives

❖ Suppose there is a blood test for a rare disease. The 
disease occurs in 1 in every 100,00 people. If you have 
the disease, the test will say so with probability 0.95. If 
you do not have the disease, the test will report a false 
positive with probability 0.001

❖ If you get a positive test result, what is the probability 
that you actually have the disease?



False positives

We have a positive test result  
and want to know the probability  
we are actually sick

Let S be the event we are sick  
and R be the event we get a positive  
result. We want to know P(S|R)

Suppose there is a blood test for a rare disease. The disease occurs in 1 in 
every 100,00 people. If you have the disease, the test will say so with 
probability 0.95. If you do not have the disease, the test will report a false 
positive with probability 0.001



False positives
Suppose there is a blood test for a rare disease. The disease occurs in 1 in 
every 100,00 people. If you have the disease, the test will say so with 
probability 0.95. If you do not have the disease, the test will report a false 
positive with probability 0.001

0.95

0.001 0.99999

0.00001

0.95 0.00001



Prosecutor’s fallacy
We’ve seen that conditional probability  
can easily mislead the intuition

In a trial, if a prosecutor has evidence E  
against a suspect, they may try to say that  
the probability of the evidence given that  
the person is innocent is very low

The quantity of relevance for justice to be  
served isn’t how likely the evidence is, but  
how likely innocence is given the evidence

Quite possible for P(I|E) to be  
close to 1 even when P(E|I) is small



Independence and conditional probability

❖ Two independent events A and B have

❖ Think about what this interacts with the definition of conditional 
probability 

❖ If A and B are independent we will have 

❖ Knowing that event B occurs tells us nothing about event A  
 



Independence with more than two events

❖ If we have a set of events, there are a couple of notions 
of independence to be mindful of 

❖ Pairwise independence: events                    are pairwise 
independent if each pair of events is independent

❖ Independence: events                     are independent if  

❖ Independence is a much stronger assumption



Cards and independence

❖ Draw a card from a shuffled deck, replace it, shuffle 
again, draw again, shuffle again draw again. So we have 
three cards drawn “with replacement”

❖ Let A be the event that card 1 and card 2 have the same 
suit, B be the event that card 2 and card 3 have the same 
suit, and C be the event that card 1 and card 3 have the 
same suit



Cards and independence
3 cards, drawn with replacement

Event A: card 1 and 2 are the same suit

Event B: card 2 and 3 are the same suit

Event C: card 1 and 3 are the same suit

However, if any two of the events occurred,  
the third has as well, so 

But 

So A, B, and C are only pairwise independent  
but not simply independent

P(A)=P(B)=P(C)

We have

And

So A, B, and C are pairwise independent



Conditional independence

❖ Another notion we will use is that of conditional 
independence

❖ We say that events                     are conditionally 
independent given event B if



Monty hall problem
❖ Recall the setup, there are 3 doors, behind two of them are 

indistinguishable goats, behind one is a car. You pick a door 
and win what’s behind it. You prefer to win a car to a goat

❖ Let’s suppose you pick a door at random and before you 
open it, Monty announces that he will now open a door and 
show you a goat from among the doors you didn’t pick.

❖ After the does this, should you switch doors from your 
original pick to the one that you didn’t pick that is still 
closed?



Monty hall

❖ Let’s call the door you picked door #1, the one the host 
opened door #2, and the one that you didn’t pick that is 
still closed door #3

❖ Let C_i be the event that the car is behind door i and H_j  
be the event that the host opened door j

❖ We want to compute P(C_1|H_2) and compare it to 
P(C_3|H_2) to see if we should switch



Monty hall
First we compute P(C_1|H_2)

1/2

1/2

1/3

1/3 1/3 1/30 1

=1/3

Now let’s compute P(C_3|H_2)
1/3

1/3 1/3 1/3

1

1/2 0 1

=2/3



Takeaway

❖ See the text for other way to set up Monty Hall and why 
it matters

❖ Conditional probabilities can be quite counterintuitive



Random Variables



Random variables

❖ We have figured out how to talk about assigning 
probabilities to outcomes and events

❖ We now look at a way of associating numbers with 
experiments, numbers that change as a function of the 
outcome of the experiment



Random variables

Thus, for every outcome       a random variable X  
associates to that outcome a real number



Example

❖ Flip a coin and observe the result. If it is heads, we 
report 1, if it is tails, we report 0. This is a random 
variable



Example

❖ We flip a coin 32 times, recording a 1 when we see heads 
and a 0 when we see tails. This produces a 32 bit 
random number which is a random variable



Example

❖ We flip a coin 32 times, reporting 1 for heads and 0 for 
tails. The parity of this 32 bit number is a random 
variable



Example

❖ We draw a hand of 5 cards. The number of pairs in the 
hand is a random variable (0, 1, or 2)



The relationship to events
Any value x of a random variable determines 

a set of outcomes, e.g. an event

So we will make reference to the probability 
that the random variable X is equal to x

And we will use shorthand P(X=x) or just P(x) to express this



Relationship to events

Another event frequently of interest is

We usually write the probability of  
this event

With the following shorthand



Distributions

It is defined for each value that X  
can take and is 0 everywhere else

This function might also be written as p(x)

The function of x given by

is called the probability distribution 
of the discrete random variable X



Distributions
We also give a special name to the function

of x given by

We call this the cumulative distribution
function of the discrete random variable

X

Note that this is a non-decreasing function
of x

Cumulative distributions are often written
with an f. So we may have


