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Theorem
The Fundamental Theorem of Calculus Given a continuous function
f (x) : [a, b]→ R then a function F(x) satisfies,

F(x) = F(a) +
∫ x

a
f (x)dx

if and only if

F ′(x) = f (x) for x ∈ [a, b]
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Next...

Can we integrate f (x)?

What about f (x) = e−x2?
What if f (x) is only known implicitly (known at a certain number of
points)?
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Integration

What is the integral
∫b

a?
Let P be a partition of [a, b] of n + 1 distinct and ordered points with x0 = a
and xn = b.
For interval [xi, xi+1] let mi be a lower bound on f (x)
For interval [xi, xi+1] let Mi be an upper bound on f (x)
Lower Sum:

L(f ; P) =
n−1∑
i=0

mi(xi+1 − xi)

Upper Sum:

U(f ; P) =
n−1∑
i=0

Mi(xi+1 − xi)
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Integration

The lower sum always under-approximates the integral
The upper sum always over-approximates the integral

L(f ; P) 6
∫ b

a
f (x) dx 6 U(f ; P)

In the limit, they are equal

lim
n→∞ L(f ; P) =

∫ b

a
f (x) dx = lim

n→∞ U(f ; P)
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Graphically: Integral
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Graphically: Lower sum
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Graphically: Upper sum
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Left-Riemann, Right-Riemann, Mid-Point

The upper and lower bounds are often difficult to identify
Use Left-Riemann, Right-Riemann, and Middle Riemann Sums
Generally the Riemann sum is

S =

n−1∑
i=0

f (zi)(xi+1 − xi)

for xi 6 zi 6 xi+1

zi = xi is a Left Riemann Sum
zi = xi+1 is a Right Riemann Sum
zi =

xi+1+xi
2 is a Middle Riemann Sum
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Left-Riemann, Right-Riemann, Mid-Point

We have a way to compute integrals. Why aren’t we done?

What is the cost?
How accurate are the results?
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Left Riemann Error Bound
If we assume that f ′(x) is continuous on the interval [a, b] then we can apply
the Taylor Series to our error analysis. For equally spaced intervals [xk, xk+1] (
h = xk+1 − xk ) the Taylor series can be written as,

f (x) = f (xk) + f ′(ξx)(x − xk)

error =

∣∣∣∣∣
n−1∑
k=0

f (xk) ∗ h −

∫ a

b
f (x)dx

∣∣∣∣∣
=

∣∣∣∣∣
n−1∑
k=0

∫ xk+1

xk

f (xk) − (f (xk) + f ′(ξx)(x − xk))dx

∣∣∣∣∣
6 M

n−1∑
k=0

h2/2 where |f ′(x)| 6 M for x ∈ [a, b]

= Mnh2/2 = M(b − a)h/2

So the error is O(h). Can we do better?
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Goals

Methods:
Newton-Cotes in general
Trapezoid Rule
Composite Trapezoid Rule
Simpson Rule
Composite Simpson Rule
Sections 7.1-7.3
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Newton-Cotes, using an interpolating polynomial

Approximate f (x) on the entire interval [a, b] using the Lagrange form of the
interpolating polynomial of degree n at equidistant points xk.

f (x) ≈ pn(x) =
n∑

k=0

f (xk)`k(x)

then we have ∫ b

a
f (x)dx ≈

n∑
k=0

f (xk)wk

where the wk are determined by

wk =

∫ b

a
`k(x)dx
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Newton-Cotes, using an interpolating polynomial

(basic) Newton-Cotes rules:
name n formula
Trapezoid 1 (b−a)

2 [f (a) + f (b)]

Simpson’s 1/3 2 (b−a)
6

[
f (a) + 4f ( a+b

2 ) + f (b)
]

Simpson’s 3/8 3 (b−a)
8 [f (a) + 3f (a + h) + 3f (b − h) + f (b)]

Boole’s 4 (b−a)
90

[
7f (a) + 32f (a + h) + 12f ( a+b

2 ) + 32f (b − h) + 7f (b)
]
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Basic Trapezoid

Use endpoints [a, b] to obtain a linear approximation to f (x). The area under
this function is the area of a trapezoid:∫ b

a
f (x) dx ≈ 1

2
(b − a)(f (a) + f (b))
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Basic Trapezoid

Trapezoid Rule:∫ x1

x0

f (x) dx ≈
∫ x1

x0

P1(x) dx =
1
2
(f (x0) + f (x1))h

∫ x1

x0

f (x) dx ≈ 1
2
(f (x0) + f (x1))h , where f (x) = 15 x2

Example ∫ 2

1
15 x2 ≈ 1

2
(15 ∗ 12 + 15 ∗ 22) ∗ 1

=
1
2
(15 + 60) = 37.5

Analytical answer is
∫2

1 15 x2 = 5 x3
∣∣2
1 = 40 − 5 = 35.
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Trapezoid, Error Bound

From a previous lecture we stated:

Theorem
Given function f with n + 1 continuous derivatives in the interval formed by I =
[min({x, x0, . . . , xn}), max({x, x0, . . . , xn})]. If p(x) is the unique interpolating
polynomial of degree 6 n with,

p(xi) = f (xi), i = 0, 1, . . . , n

then the error is computed by the formula,

p(x) − f (x) =
f (n+1)(ξ(x))
(n + 1)!

(x − x0)(x − x1) . . . (x − xn), for some ξ(x) ∈ I
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Trapezoid, Error Bound
For the Trapezoidal Rule we have,

error =

∣∣∣∣∣
∫ b

a
p1(x) − f (x)dx

∣∣∣∣∣
=

∣∣∣∣∣
∫ b

a

f (2)(ξ(x))
2!

(x − a)(x − b)dx

∣∣∣∣∣
6

M
2

∫ b

a
|(x − a)(x − b)| dx where |f ′′(x)| 6 M for x ∈ [a, b]

=
M
12

(b − a)3

If b − a� 1 we denote h = b − a then our error bound is O(h3).
Note: If f (x) is a linear function then f ′′(x) = 0 for all x ∈ [a, b] and then M = 0
and our error bound is exact.
What if h = b − a is large? Use a higher degree interpolating polynomial? Is
there an alternative?
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Newton-Cotes,Exact Error Bounds

The error,

error =
∫ b

a
f (x)dx − approximate formula

for the various rules is given by the following table

(basic) Newton-Cotes rules:

name of formula n error
Trapezoid 1 − (b−a)3

12 f (2)(ξ)

Simpson’s 1/3 2 − (b−a)5

2880 f (4)(ξ)

Simpson’s 3/8 3 − (b−a)5

6480 f (4)(ξ)

Boole’s 4 − (b−a)7

1935360 f (6)(ξ)
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Composite Trapezoid
Obviously a naive linear approximation won’t cut it.

Consider a partition P = {x0 = a < . . . xn = b} of [a, b].

In each interval [xi, xi+1] use the basic Trapezoid:∫ b

a
f (x) dx ≈

n−1∑
i=0

1
2
(xi+1 − xi)(f (xi) + f (xi+1))
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Composite Trapezoid

With uniform spacing of P, hi = xi+1 − xi = h is constant

T(f ; P) =
∫ b

a
f (x) dx ≈ h

2

n−1∑
i=0

f (xi) + f (xi+1)

This becomes

T(f ; P) =
∫ b

a
f (x) dx ≈ h

2
(f (x0) + 2f (x1) + 2f (x2) + · · ·+ 2f (xn−1) + f (xn))

1 h = (b − a)/n
2 sum = (f (a) + f (b))/2
3 for i = 1 to n − 1
4 sum = sum + f (xi)
5 end

6 sum = sum · h
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Example

Test composite trapezoid for ∫ 5

0
xe−x

Question: What is the order of accuracy (the p in O(hp))?
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Composite Trapezoid Error Bound
The error in computing the integral is,

error =

∣∣∣∣∣
∫ b

a
f (x) dx −

h
2

n−1∑
i=0

f (xi) + f (xi+1)

∣∣∣∣∣
=

∣∣∣∣∣
n−1∑
i=0

∫ xi+1

xi

(
f (x) −

h
2
(f (xi) + f (xi+1))

)
dx

∣∣∣∣∣
6

n−1∑
i=0

∣∣∣∣∫ xi+1

xi

(
f (x) −

h
2
(f (xi) + f (xi+1))

)
dx
∣∣∣∣

=

n−1∑
i=0

Ei

where the Ei are the error bounds in each interval, [xi, xi+1],

Ei =
Mi

12
h3 where |f ′′(x)| 6 Mi for x ∈ [xi, xi+1]
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Composite Trapezoid Error Bound

So the total error is

n−1∑
i=0

Ei =

n−1∑
i=0

Mi

12
h3

6
M
12

n−1∑
i=0

h3 where |f ′′(x)| 6 M for x ∈ [a, b]

=
M
12

nh3

=
M
12

(b − a)h2
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Example
How many points should be used to ensure the composite Trapezoid rule is
accurate to 10−6 for

∫1
0 e−x2 dx? Need

|f ′′(η)|
12

(b − a)h2 6 10−6

How big is f ′′(x)?

f (x) = e−x2

f ′(x) = −2xe−x2

f ′′(x) = −2e−x2
+ 4x2e−x2

f ′′′(x) = 12xe−x2
− 8x3e−x2

So f ′′′ is always positive for x > 0. So f ′′ is monotone increasing and thus |f ′′|
takes on a maximum at an endpoint: |f ′′(0)| = 2 and |f ′′(1)| = 2

e . Then bound

(b − a)2h2

12
6 10−6

Or
h2 6 6× 10−6 ⇒

√
(1/6)103 6 n

or n + 1 >= 410.
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How do we improve Composite Trapezoid?

instead of a linear approximation, use a quadratic approximation
⇒ Composite Simpson’s Rule
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Composite Simpson

Over a uniform partition P = x0, x1, . . . , xn, use Basic Simpson’s Rule over
each subinterval [x2i, x2i+2] where n is even and h = b−a

n .

∫ b

a
f (x) dx =

n/2−1∑
i=0

∫ x2i+2

x2i

f (x) dx

≈
n/2−1∑

i=0

2h
6

[f (x2i) + 4f (x2i+1) + f (x2i+2)]

≈ h
3
[f (x0) + 4f (x1) + 2f (x2) + 4f (x3) + 2f (x4) + · · ·+ 4f (xn−1) + f (xn)]
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Simpson

Composite Simpson’s Rule∫ b

a
f (x) dx ≈ h

3

f (a) + f (b) + 4
n/2∑
i=1

f (a + (2i − 1)h) + 2
n/2−1∑

i=1

f (a + 2ih)
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Error Bound for Composite Simpson Method
Taylor Series:

f (a + h) = f + hf ′ +
1
2!

h2f ′′ +
1
3!

h3f ′′′ +
1
4!

h4f (4) +
1
5!

h5f (5) + . . .

f (a + 2h) = f + 2hf ′ + 2h2f ′′ +
4
3

h3f ′′′ +
2
3

h4f (4) +
4
15

h5f (5) + . . .

This gives

h
3
[f (a) + 4f (a + h) + f (b)] = 2hf + 2h2f ′ +

4
3

h3f ′′ +
2
3

h4f ′′′ +
5

18
h5f (4)

Integrating the Taylor Series expansion of f (x) exactly gives∫ b

a
f (x) dx = 2hf + 2h2f ′ +

4
3

h3f ′′ +
2
3

h4f ′′′ +
4

15
h5f (4)

So basic Simpson’s Rule gives an error of

−
1

90

(
b − a

2

)5

f (4)(ξ)
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Why is composite Simpson O(h4)?
basic Simpson’s Rule:

−
1

90

(
b − a

2

)5

f (4)(ξ)

Over n/2 subintervals [x2i, x2i+2] becomes:

err =
n/2∑
i=1

−
1
90

(
x2i+2 − x2i

2

)5

f (4)(ξi) = −
1
90

n/2∑
i=1

(
2h
2

)5

f (4)(ξi)

= −
1

90
n
2

h5f (4)(ξ) = −
1

180
(b − a)

h
h5f (4)(ξ)

= −
b − a
180

h4f (4)(ξ)

Composite Simpson’s Rule

−
b − a
180

h4f (4)(ξ)

We “gain” two orders over Trapezoid
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Can we generalize?

Summary:
left/right Riemann: approximate f (x) by 0-degree p(x) and integrate
Trapezoid: approximate f (x) by 1-degree p(x) and integrate
Simpson: approximate f (x) by 2-degree p(x) and integrate

Degree of Precision
If the integration rule has zero error when integrating any polynomial of
degree 6 r and if the error is nonzero for some polynomial of degree r + 1,
then the rule has degree of precision equal to r.
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Exact Error bounds for composite Newton-Cotes

The exact error,

error =
∫ b

a
f (x) dx − approximate formula

for the various rules is given by the following table,
name of formula error
Trapezoid − (b−a)h2

12 f ′′(ξ)

Simpson’s 1/3 − (b−a)h4

180 f (4)(ξ)

Simpson’s 3/8 − (b−a)h4

80 f (4)(ξ)

Boole’s − 2(b−a)h6

945 f (6)(ξ)

where h = (b−a)
n and n is the number of intervals of the partition of [a, b].
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Matlab trapz

The Matlab trapz function is based on the composite trapezoidal rule. From
the previous slide we see that the error for the composite trapezoid rule is
proportional to f ′′(ξ) and thus exact for linear functions.

>> x = linspace(−1, 1, 200)
>> y = 3 ∗ x − 2
>> trapz(x, y)
ans =

− 4
>> syms x
>> int(3 ∗ x − 2,−1, 1)
ans =

− 4

T. Gambill (UIUC) CS 357 April 14, 2011 33 / 68



Adaptive Simpson’s Method

Why use a fixed length interval h?
Use an interval that varies in proportion to the error!

Algorithm
Compute the approximate area using Simpson’s rule.

S(a, b) =
(b − a)

6

[
f (a) + 4f (

a + b
2

) + f (b)
]

Halve the interval and compute S(a, a+b
2 ) and S( a+b

2 , b)
Estimate the error,

error ≈ 1
15

∣∣∣∣(S(a,
a + b

2
) + S(

a + b
2

, b)
)
− S(a, b)

∣∣∣∣
If the error is less than some specified tolerance = tol, we are done, otherwise
recursively compute each of S(a, a+b

2 ) and S( a+b
2 , b) with tolerance = tol

2 .
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Adaptive Simpson’s Method - Why does this method
work?
Denote I(a, b) =

∫b
a f (x) dx then we can write, using (basic) Simpson’s rule

denoted by S(a, b), and the error is defined as E(a, b),

E(a, b) = I(a, b) − S(a, b)
Integration over the interval [a, b] can be broken into halves,

I(a, b) = I(a,
a + b

2
) + I(

a + b
2

, b)

thus we can write these integrals as,

E(a, b) + S(a, b) = E(a, (a + b)/2) + S(a, (a + b)/2) +
E((a + b)/2, b) + S((a + b)/2, b)

and collecting terms gives,

E(a, b) − (E(a, (a + b)/2) + E((a + b)/2, b)) =
(S(a, (a + b)/2) + S((a + b)/2, b)) − S(a, b)
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Adaptive Simpson’s Method- Why does this method
work?

and since the error for Simpson’s rule is

E(a, b) = −
h5

2880
f (4)(ξ[a,b])

E(a, (a + b)/2) + E((a + b)/2, b) = −
1

32
∗ h5

2880
f (4)(ξ[a,(a+b)/2]) +

−
1

32
∗ h5

2880
f (4)(ξ[(a+b)/2,b])

As we recursively compute the integral the widths of the intervals b − a will
become smaller, and sufficiently small so that f (4)(x) is constant on that
interval and therefore,

E(a, b) ≈ 16 ∗ (E(a, (a + b)/2) + E((a + b)/2, b))
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Adaptive Simpson’s Method - Why does this method
work?

Thus

E(a, b) − (E(a, (a + b)/2) + E((a + b)/2, b))
(S(a, (a + b)/2) + S((a + b)/2, b)) − S(a, b)

becomes

−15 ∗ E(a, b)
(S(a, (a + b)/2) + S((a + b)/2, b)) − S(a, b)
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Matlab quad

The Matlab quad function is based on the adaptive Simpson’s rule.

Example:
∫1

0 x5 dx

>> quad(@(x)x.̂5,−1, 1, 1.0e − 3) (tolerance = 1.0e − 3)
ans =

− 2.775557561562891e − 017
>> quad(@(x)x.̂5,−1, 1, 1.0e − 7) (tolerance = 1.0e − 7)
ans =

0
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Monte Carlo integration
We compute the integral of f : Rd → R, d > 1 by generating n random points
in Ω ⊂ Rd and use the approximation,∫ ∫

. . .
∫
Ω

f (x1, x2, . . . , xd) dx1dx2 . . . dxd ≈ volume(Ω) ∗
∑n

i=1 f (zi)

n

where zi are randomly chosen values from Rd. We can also use this
technique to compute volumes (areas) in Rd. Define the characteristic
function χΩ of a region Ω as,

χΩ(x) = 1 if x ∈ Ω
= 0 if x < Ω

then for a rectangular region that bounds Ω we have,

volume(Ω) =

∫ b1

a1

∫ b2

a2

. . .
∫ bd

ad

χΩ(x) dx1dx2 . . . dxd ≈
n∏

i=1

(bi − ai) ∗
∑n

i=1 χ(zi)

n
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Monte Carlo integration Error

The error in computing the integral of f : Rd → R, d > 1 by generating n
random points in Rd and using the Monte Carlo Method is,

O(
1√
n
) =

∣∣∣∣∫ ∫ . . .
∫
Ω

f (x1, x2, . . . , xd) dx1dx2 . . . dxd − volume(Ω) ∗
∑n

i=1 f (zi)

n

∣∣∣∣
where zi are randomly chosen values from Ω ⊂ Rd. Thus, to increase the
accuracy of your approximation by one decimal digit using a Monte Carlo
method you must increase the number of sample points by a factor of 100.
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Stochastic Simulation
From M. Heath, Scientific Computing, 2nd ed., CS450

Two requirements for MC:
I knowing which probability distributions are needed
I generating sufficient random numbers

The probability distribution depends on the problem (theoretical or
empirical evidence)
The probability distribution can be approximated well by simulating a
large number of trials

http://www.cse.uiuc.edu/iem/random/bfnneedl/
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Randomness
From M. Heath, Scientific Computing, 2nd ed., CS450

Randomness ≈ unpredictability
One view: a sequence is random if it has no shorter description
Physical processes, such as flipping a coin or tossing dice, are
deterministic with enough information about the governing equations and
initial conditions.
But even for deterministic systems, sensitivity to the initial conditions can
render the behavior practically unpredictable.
we need random simulation methods
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Repeatability
From M. Heath, Scientific Computing, 2nd ed., CS450

With unpredictability, true randomness is not repeatable
...but lack of repeatability makes testing/debugging difficult
So we want repeatability, but also independence of the trials

Use the ’twister’ method for Monte Carlo methods.

1 >> rand(’twister’,1234) % rand(’method’,seed)

2 >> rand(10,1)
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Pseudorandom Numbers
From M. Heath, Scientific Computing, 2nd ed., CS450

Computer algorithms for random number generations are deterministic

...but may have long periodicity (a long time until an apparent pattern
emerges)
These sequences are labeled pseudorandom
Pseudorandom sequences are predictable and reproducible (this is
mostly good)

T. Gambill (UIUC) CS 357 April 14, 2011 44 / 68



Random Number Generators
From M. Heath, Scientific Computing, 2nd ed., CS450

Properties of a good random number generator:
Random pattern: passes statistical tests of randomness
Long period: long time before repeating

Efficiency: executes rapidly and with low storage
Repeatability: same sequence is generated using same initial states

Portability: same sequences are generated on different architectures
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Random Number Generators
From M. Heath, Scientific Computing, 2nd ed., CS450

Early attempts relied on complexity to ensure randomness
“midsquare” method: square each member of a sequence and take the
middle portion of the results as the next member of the sequence
...simple methods with a statistical basis are preferable
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Gaussian Quadrature

free ourselves from equally spaced nodes
combine selection of the nodes and selection of the weights into one
quadrature rule

Gaussian Quadrature
Choose the nodes and coefficients optimally to maximize the degree of
precision of the quadrature rule:∫ b

a
f (x) dx ≈

n∑
j=0

wjf (xj)

Goal
Seek wj and xj so that the quadrature rule is exact for really high polynomials

T. Gambill (UIUC) CS 357 April 14, 2011 47 / 68



Gaussian Quadrature

∫ b

a
f (x) dx ≈

n∑
j=0

wjf (xj)

we have n + 1 points xj ∈ [a, b], a 6 x0 < x1 < · · · < xn−1 < xn 6 b.
we have n + 1 real coefficients wj

so there are 2n + 2 total unknowns to take care of

there were only 2 unknowns in the case of trapezoid (2 weights)
there were only 3 unknowns in the case of Simpson (3 weights)
there were only n + 1 unknowns in the case of general Newton-Cotes
(n + 1 weights)

2n + 2 unknowns (using n + 1 nodes) can be used to exactly interpolate and
integrate polynomials of degree up to 2n + 1
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Gaussian Quadrature

∫ b

a
f (x) dx ≈

n∑
j=0

wjf (xj)

we have n + 1 points xj ∈ [a, b], a 6 x0 < x1 < · · · < xn−1 < xn 6 b.
we have n + 1 real coefficients wj

so there are 2n + 2 total unknowns to take care of

there were only 2 unknowns in the case of trapezoid (2 weights)
there were only 3 unknowns in the case of Simpson (3 weights)
there were only n + 1 unknowns in the case of general Newton-Cotes
(n + 1 weights)

2n + 2 unknowns (using n + 1 nodes) can be used to exactly interpolate and
integrate polynomials of degree up to 2n + 1
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Better Nodes Example

The first thing we do is SIMPLIFY
consider the case of n = 1 (2-point)
consider [a, b] = [−1, 1] for simplicity
we know how the trapezoid rule works
Question: can we possibly do better using only 2 function evaluations?
Goal: Find w0, w1, x0, x1 so that∫ 1

−1
f (x) dx ≈ w0f (x0) + w1f (x1)

is as accurate as possible...
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Graphical View

Consider ∫ 2

1
x3 + 1 dx = 4.75
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Derive...

Again, we are considering [a, b] = [−1, 1] for simplicity:∫ 1

−1
f (x) dx ≈ w0f (x0) + w1f (x1)

Goal: find w0, w1, x0, x1 so that the approximation is exact up to cubics. So try
any cubic:

f (x) = c0 + c1x + c2x2 + c3x3

This implies that:∫ 1

−1
f (x) dx =

∫ 1

−1

(
c0 + c1x + c2x2 + c3x3) dx

= w0
(
c0 + c1x0 + c2x2

0 + c3x3
0
)
+

w1
(
c0 + c1x1 + c2x2

1 + c3x3
1
)
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Derive...

∫ 1

−1
f (x) dx =

∫ 1

−1

(
c0 + c1x + c2x2 + c3x3) dx

= w0
(
c0 + c1x0 + c2x2

0 + c3x3
0
)
+

w1
(
c0 + c1x1 + c2x2

1 + c3x3
1
)

Rearrange into constant, linear, quadratic, and cubic terms:

c0

(
w0 + w1 −

∫ 1

−1
dx

)
+ c1

(
w0x0 + w1x1 −

∫ 1

−1
x dx

)
+

c2

(
w0x2

0 + w1x2
1 −

∫ 1

−1
x2 dx

)
+ c3

(
w0x3

0 + w1x3
1 −

∫ 1

−1
x3 dx

)
= 0

Since c0, c1, c2 and c3 are arbitrary, then their coefficients must all be zero.
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Derive...

This implies:

w0 + w1 =

∫ 1

−1
dx = 2 w0x0 + w1x1 =

∫ 1

−1
x dx = 0

w0x2
0 + w1x2

1 =

∫ 1

−1
x2 dx =

2
3

w0x3
0 + w1x3

1 =

∫ 1

−1
x3 dx = 0

Some algebra leads to:

w0 = 1 w1 = 1 x0 = −

√
3

3
x1 =

√
3

3

Therefore: ∫ 1

−1
f (x) dx ≈ f

(
−

√
3

3

)
+ f

( √
3

3

)

T. Gambill (UIUC) CS 357 April 14, 2011 53 / 68



Over another interval?

∫ 1

−1
f (x) dx ≈ f

(
−

√
3

3

)
+ f

( √
3

3

)

∫ b

a
f (x) dx ≈?

integrating over [a, b] instead of [−1, 1] needs a transformation: a change
of variables
want t = c1x + c0 with t = −1 at x = a and t = 1 at x = b
let t = 2

b−a x − b+a
b−a

(verify)
let x = b−a

2 t + b+a
2

then dx = b−a
2 dt
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Over another interval?

∫ b

a
f (x) dx ≈?

let x = b−a
2 t + b+a

2

then dx = b−a
2 dt∫ b

a
f (x) dx =

∫ 1

−1
f
(
(b − a)t + b + a

2

)
b − a

2
dt

now use the quadrature formula over [−1, 1]
note: using two points, n = 1, gave us exact integration for polynomials of
degree less 2*1+1 = 3 and less.
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Extending Gauss Quadrature

we need more to make this work for more than two points
A sensible quadrature rule for the interval [−1, 1] based on 1 node would
use the node x = 0. This is a root of φ(x) = x
Notice: ± 1√

3
are the roots of φ(x) = 3x2 − 1

general φ(x)?
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Gauss Quadrature Theorem

Karl Friedrich Gauss proved the following result:
Let q(x) be a nontrivial polynomial of degree n + 1 such that∫ b

a
xkq(x)dx = 0 (0 6 k 6 n)

and let x0, x1, . . . , xn be the zeros of q(x). If `i(x) is the i-th Lagrange basis
function based on the nodes x0, x1, . . . , xn then,∫ b

a
f (x)dx ≈

n∑
i=0

Aif (xi), where Ai =

∫ b

a
`i(x)dx

will be exact for all polynomials of degree at most 2n + 1. (Wow!)
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Sketch of Proof

Let f (x) be a polynomial of degree 2n + 1. Assuming that we can find the
function q(x) as mentioned in the previous slide then we can write
f (x) = p(x)q(x) + r(x), where p(x) and r(x) are of degree at most n
(This is basically dividing f by q with remainder r).
Then by the hypothesis,

∫b
a p(x)q(x)dx = 0. Further,

f (xi) = p(xi)q(xi) + r(xi) = r(xi). Thus,∫ b

a
f (x)dx =

∫ b

a
r(x)dx ≈

n∑
i=0

f (xi)

∫ b

a
`i(x)dx

But this is exact because r(x) is (at most) a degree n polynomial.
Thus, we need to find the polynomials q(x).
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Orthogonal Polynomials

Orthogonality of Functions
Two functions g(x) and h(x) are orthogonal on [−1, 1] if∫ 1

−1
g(x)h(x) dx = 0

so the nodes we’re using are roots of orthogonal polynomials
these are the Legendre Polynomials
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Legendre Polynomials
given on the exam

φ0 = 1
φ1 = x

φ2 =
3x2 − 1

2

φ3 =
5x3 − 3x

2
...

In general:

φn(x) =
2n − 1

n
xφn−1(x) −

n − 1
n

φn−2(x)
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Notes on Legendre Roots

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

-1

-0.75

-0.5

-0.25

0.25

0.5

0.75

1

The Legendre Polynomials are orthogonal (nice!)
The Legendre Polynomials increase in polynomials order (like
monomials)
The Legendre Polynomials don’t suffer from poor conditioning (unlike
monomials...more in the linear algebra section)
The Legendre Polynomials don’t have a closed form expression
(recursion relation is needed)
The roots of the Legendre Polynomials are the nodes for Gaussian
Quadrature (GL nodes)
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Quadrature Nodes (see)
Often listed in tables
Weights determined by extension of above
Roots are symmetric in [−1, 1]
Example:

1 if(n==0)

2 x = 0; w = 2;

3 if(n==1)

4 x(1) = -1/sqrt(3); x(2) = -x(1);

5 w(1) = 1; w(2) = w(1);

6 if(n==2)

7 x(1) = -sqrt(3/5); x(2) = 0; x(3) = -x(1)

;

8 w(1) = 5/9; w(2) = 8/9; w(3) = w(1)

;

9 if(n==3)

10 x(1) = -0.861136311594053; x(4) = -x(1);

11 x(2) = -0.339981043584856; x(3) = -x(2);

12 w(1) = 0.347854845137454; w(4) = w(1);

13 w(2) = 0.652145154862546; w(3) = w(2);

14 if(n==4)

15 x(1) = -0.906179845938664; x(5) = -x(1);

16 x(2) = -0.538469310105683; x(4) = -x(2);

17 x(3) = 0;

18 w(1) = 0.236926885056189; w(5) = w(1);

19 w(2) = 0.478628670499366; w(4) = w(2);

20 w(3) = 0.568888888888889;

21 if(n==5)

22 x(1) = -0.932469514203152; x(6) = -x(1);

23 x(2) = -0.661209386466265; x(5) = -x(2);

24 x(3) = -0.238619186083197; x(4) = -x(3);

25 w(1) = 0.171324492379170; w(6) = w(1);

26 w(2) = 0.360761573048139; w(5) = w(2);

27 w(3) = 0.467913934572691; w(4) = w(3);
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View of Nodes

1.0000 1.0000

Order 2
1.0000 1.0000

Order 2
1.0000 1.0000

Order 2
1.0000 1.0000

Order 2

0.5556 0.8889 0.5556

Order 3
0.5556 0.8889 0.5556

Order 3
0.5556 0.8889 0.5556

Order 3
0.5556 0.8889 0.5556

Order 3

0.3479 0.6521 0.6521 0.3479

Order 4
0.3479 0.6521 0.6521 0.3479

Order 4
0.3479 0.6521 0.6521 0.3479

Order 4
0.3479 0.6521 0.6521 0.3479

Order 4

0.2369 0.4786 0.5689 0.4786 0.2369

Order 5
0.2369 0.4786 0.5689 0.4786 0.2369

Order 5
0.2369 0.4786 0.5689 0.4786 0.2369

Order 5
0.2369 0.4786 0.5689 0.4786 0.2369

Order 5

-1 -0.5 0 0.5 1

0.1713 0.3608 0.4679 0.4679 0.3608 0.17130.1713 0.3608 0.4679 0.4679 0.3608 0.17130.1713 0.3608 0.4679 0.4679 0.3608 0.17130.1713 0.3608 0.4679 0.4679 0.3608 0.1713

Order 6
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Theory

The connection between the roots of the Legendre polynomials and exact
integration of polynomials is established by the following theorem.

Theorem
Suppose that x0, x1, . . . , xn are roots of the nth Legendre polynomial φn+1(x)
and that for each i = 0, 1, . . . , n the numbers wi are defined by

wi =

∫ 1

−1

n∏
j = 0
j , i

x − xj

xi − xj
dx =

∫ 1

−1
`i(x) dx

Then ∫ 1

−1
f (x)dx =

n∑
i=0

wif (xi),

where f (x) is any polynomial of degree less or equal to 2n + 1.

T. Gambill (UIUC) CS 357 April 14, 2011 64 / 68



Do not!

!!!
When evaluating a quadrature rule∫ 1

−1
f (x)dx =

n∑
i=0

wif (xi).

do not generate the nodes and weights each time. Use a lookup table...

T. Gambill (UIUC) CS 357 April 14, 2011 65 / 68



Example

Approximate
∫ 1.5

1
x2 ln x dx = 0.192259357732796 using Gaussian quadrature

with n = 1.

Solution As derived earlier we want to use
∫ 1

−1
f (x) dx ≈ f

(
−

√
3

3

)
+ f

( √
3

3

)
From earlier we know that we are interested in∫ 1.5

1
f (x) dx =

∫ 1

−1
f
(
(1.5 − 1)t + (1.5 + 1)

2

)
1.5 − 1

2
dt

Therefore, we are looking for the integral of

1
4

∫ 1

−1
f
(

x + 5
4

)
dx =

1
4

∫ 1

−1

(
x + 5

4

)2

ln
(

x + 5
4

)
dx

Using Gaussian quadrature, our numerical integration becomes:

1
4

(−
√

3
3 + 5
4

)2

ln

(
−

√
3

3 + 5
4

)
+

( √
3

3 + 5
4

)2

ln

( √
3

3 + 5
4

) = 0.1922687
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Example

Approximate
∫ 1

0
x2e−x dx = 0.160602794142788 using Gaussian quadrature with

n = 1.
SolutionWe again want to convert our limits of integration to -1 to 1. Using the
same process as the earlier example, we get:∫ 1

0
x2e−xdx =

1
2

∫ 1

−1

(
t + 1

2

)2

e(t+1)/2dt.

Using the Gaussian roots we get:

∫ 1

0
x2e−xdx ≈ 1

2

(−
√

3
3 + 1
2

)2

e(−
√

3
3 +1)/2 +

( √
3

3 + 1
2

)2

e(
√

3
3 +1)/2

 = 0.1594104
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Matlab quadl

The Matlab quadl function is based on the adaptive Gauass-Lobatto’s rule.

Gauss-Lobatto integration is similar to Gaussian quadrature except that,
The end points of the interval are included in the nodes
Accurate with polynomials up to degree 2n − 1.

Example:
∫1
−1 x5 dx

>> quadl(@(x)x.̂5,−1, 1, 1.0e − 20) (tolerance = 1.0e − 20)
ans =

0
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