Lecture 12
 Interpolation/Splines

T. Gambill

Department of Computer Science University of Illinois at Urbana-Champaign

April 12, 2011

Fonts == interpolation

- how do we "contain" our interpolation?
- splines
- Postscript (Adobe): rasterization on-the-fly. Fonts, etc are defined as cubic Bézier curves (linear interpolation between lower order Bézier curves)
- TrueType (Apple): similar, quadratic Bézier curves, thus cannot convert from TrueType to PS (Type1) losslessly

Why Splines?

- truetype fonts, postscript, metafonts
- graphics surfaces
- smooth surfaces are needed
- how do we interpolate smoothly a set of data?
- keywords: Bezier Curves, splines, B-splines, NURBS
- basic tool: piecewise interpolation

Piecewise Polynomial

A function $f(x)$ is considered a piecewise polynomial on $[a, b]$ if there exists a (finite) partition P of $[a, b]$ such that $f(x)$ is a polynomial on each $\left(t_{i}, t_{i+1}\right) \in P$.

Example

$$
f(x)= \begin{cases}x^{3} & x \in[0,1] \\ x & x \in(1,2) \\ 3 & x \in[2,3]\end{cases}
$$

What do we want?

- we would like the piecewise polynomial to do two things
(1) interpolate (or be close to) some set of data points
(2) look nice (smooth)
- one option is called a spline

Splines

- A spline is a piecewise polynomial with a certain level of smoothness.
- take Matlab:

$$
\operatorname{plot}(1: 7, \operatorname{rand}(1,7))
$$

- this is linear and continuous, but not very smooth
- the function changes behavior at knots(also called nodes) $x=1, x=2 \ldots, x=7$

Degree 1 Splines

definition

A function $S(x)$ is a spline of degree 1 if:
(c) The domain of $S(x)$ is an interval $[a, b]$
(2) $S(x)$ is continuous on $[a, b]$
(3) There is a partition $a=t_{0}<t_{1}<\cdots<t_{n}=b$ such that $S(x)$ is linear on each subinterval $\left[t_{i}, t_{i+1}\right]$.

Example

$$
S(x)= \begin{cases}x & x \in[-1,0] \\ 0 & x \in(0,1) \\ 2 x-2 & x \in[1,2]\end{cases}
$$

Degree 1 Splines

Given data t_{0}, \ldots, t_{n} and y_{0}, \ldots, y_{n}, how do we form a spline?
We need two things to hold in the interval $[a, b]=\left[t_{0}, t_{n}\right]$:
(1) $S\left(t_{i}\right)=y_{i}$ for $i=0, \ldots, n$
(2) $S(x)=S_{i}(x)=a_{i} x+b_{i}$ for $x \in\left[t_{i}, t_{i+1}\right]$ and $i=0, \ldots, n-1$

Write $S_{i}(x)$ in point-slope form

$$
\begin{aligned}
S_{i}(x) & =y_{i}+m_{i}\left(x-t_{i}\right) \\
& =y_{i}+\frac{y_{i+1}-y_{i}}{t_{i+1}-t_{i}}\left(x-t_{i}\right)
\end{aligned}
$$

Evaluation of a Degree 1 Splines: Computing $S(x)$

```
input t,y vectors of data
input evaluation location }
find interval i with }x\in[\mp@subsup{t}{i}{},\mp@subsup{t}{i+1}{}
S(x)=\mp@subsup{y}{i}{}+(x-\mp@subsup{t}{i}{})((\mp@subsup{y}{i+1}{*}-\mp@subsup{y}{i}{})/(\mp@subsup{t}{i+1}{}-\mp@subsup{t}{i}{}))
```


Determining the coefficients of $S_{i}(x)$ for a Degree 1 Spline

Input $n+1$ data points $t_{0}, \ldots, t_{n}, y_{0}, \ldots, y_{n}$
$S_{i}(x)$ view:

- in each interval we have $S(x)=S_{i}(x)=a_{i} x+b_{i}$ for $x \in\left[t_{i}, t_{i+1}\right]$, and $i=0, \ldots, n-1$
- 2 unknowns a_{i}, b_{i} per interval $\left[t_{i}, t_{i+1}\right]$
- we have $S_{i}\left(t_{i}\right)=y_{i}$ and $S_{i}\left(t_{i+1}\right)=y_{i+1}$, for $i=0, \ldots, n-1$. $S(x)$ view:
- $2 n$ total unknowns
- 2 constraints (equations) per interval gives $2 n$ total constraints

Degree 2 Splines

definition

A function $S(x)$ is a spline of degree 2 if:
(1) The domain of $S(x)$ is an interval $[a, b]$
(2) $S(x)$ is continuous on $[a, b]$
(3) $S^{\prime}(x)$ is continuous on $[a, b]$
(9) There is a partition $a=t_{0}<t_{1}<\cdots<t_{n}=b$ such that $S(x)$ is quadratic on each subinterval $\left[t_{i}, t_{i+1}\right]$.

Degree 2 Splines

$$
S(x)= \begin{cases}S_{0}(x) & x \in\left[t_{0}, t_{1}\right] \\ S_{1}(x) & x \in\left[t_{1}, t_{2}\right] \\ \vdots & \vdots \\ S_{n-1}(x) & x \in\left[t_{n-1}, t_{n}\right]\end{cases}
$$

for each $i=0,1, \ldots, n-1$ we have

$$
S_{i}(x)=a_{i} x^{2}+b_{i} x+c_{i}
$$

What are a_{i}, b_{i}, c_{i} ?

Degree 2 Splines

- 3 unknowns a_{i}, b_{i}, c_{i} in each interval $\left[t_{i}, t_{i+1}\right]$ for $i=0,1, \ldots, n-1$
- $3 n$ total unknowns
- $2 n$ constraints (equations) for matching up the input data (continuity of $S(x))$:

$$
S_{i}\left(t_{i}\right)=y_{i}, \quad S_{i}\left(t_{i+1}\right)=y_{i+1}
$$

- $n-1$ interior points require continuity of $S^{\prime}(x)$:
$S_{i}^{\prime}\left(t_{i+1}\right)=S_{i+1}^{\prime}\left(t_{i+1}\right)$ for $i=0,2, \ldots, n-2$
- but this is just $n-1$ constraints
- total of $3 n-1$ constraints
- extra consraint: $S^{\prime}\left(t_{0}\right)=$ given, for example.

Degree 3 Splines: Cubic splines

definition

A function $S(x)$ is a spline of degree 3 if:
(1) The domain of $S(x)$ is an interval $[a, b]$
(2) $S(x)$ is continuous on $[a, b]$
(3) $S^{\prime}(x)$ is continuous on $[a, b]$
(4) $S^{\prime \prime}(x)$ is continuous on $[a, b]$
(6) There is a partition $a=t_{0}<t_{1}<\cdots<t_{n}=b$ such that $S(x)$ is cubic on each subinterval $\left[t_{i}, t_{i+1}\right]$.

Degree 3 Splines: Cubic Splines $4 n$ Unknowns

In each interval $\left[t_{i}, t_{i+1}\right]$ for $i=0,1, \ldots, n-1, S(x)$ looks like

$$
S_{i}(x)=a_{0, i}+a_{1, i} x+a_{2, i} x^{2}+a_{3, i} x^{3}
$$

- n intervals, 4 unknowns per interval
- $4 n$ unknowns

Degree 3 Splines: Cubic Splines $4 n-2$ Constraints

In each interval $\left[t_{i}, t_{i+1}\right]$ for $i=0,1, \ldots, n-1, S(x)$ looks like

$$
S_{i}(x)=a_{0, i}+a_{1, i} x+a_{2, i} x^{2}+a_{3, i} x^{3}
$$

- n intervals, 4 unknowns per interval
- $4 n$ unknowns

Degree 3 Splines: Cubic Splines $4 n-2$ Constraints

In each interval $\left[t_{i}, t_{i+1}\right]$ for $i=0,1, \ldots, n-1, S(x)$ looks like

$$
S_{i}(x)=a_{0, i}+a_{1, i} x+a_{2, i} x^{2}+a_{3, i} x^{3}
$$

- n intervals, 4 unknowns per interval
- $4 n$ unknowns
- $2 n$ constraints by continuity: $S_{i}\left(t_{i}\right)=y_{i}$ and $S_{i}\left(t_{i+1}\right)=y_{i+1}$ for $i=0,1, \ldots, n-1$

Degree 3 Splines: Cubic Splines $4 n-2$ Constraints

In each interval $\left[t_{i}, t_{i+1}\right]$ for $i=0,1, \ldots, n-1, S(x)$ looks like

$$
S_{i}(x)=a_{0, i}+a_{1, i} x+a_{2, i} x^{2}+a_{3, i} x^{3}
$$

- n intervals, 4 unknowns per interval
- $4 n$ unknowns
- $2 n$ constraints by continuity: $S_{i}\left(t_{i}\right)=y_{i}$ and $S_{i}\left(t_{i+1}\right)=y_{i+1}$ for $i=0,1, \ldots, n-1$
- $n-1$ constraints by continuity of $S^{\prime}(x): S_{i}^{\prime}\left(t_{i+1}\right)=S_{i+1}^{\prime}\left(t_{i+1}\right)$ for $i=0,1, \ldots, n-2$

Degree 3 Splines: Cubic Splines $4 n-2$ Constraints

In each interval $\left[t_{i}, t_{i+1}\right]$ for $i=0,1, \ldots, n-1, S(x)$ looks like

$$
S_{i}(x)=a_{0, i}+a_{1, i} x+a_{2, i} x^{2}+a_{3, i} x^{3}
$$

- n intervals, 4 unknowns per interval
- $4 n$ unknowns
- $2 n$ constraints by continuity: $S_{i}\left(t_{i}\right)=y_{i}$ and $S_{i}\left(t_{i+1}\right)=y_{i+1}$ for $i=0,1, \ldots, n-1$
- $n-1$ constraints by continuity of $S^{\prime}(x): S_{i}^{\prime}\left(t_{i+1}\right)=S_{i+1}^{\prime}\left(t_{i+1}\right)$ for $i=0,1, \ldots, n-2$
- $n-1$ constraints by continuity of $S^{\prime \prime}(x): S_{i}^{\prime \prime}\left(t_{i+1}\right)=S_{i+1}^{\prime \prime}\left(t_{i+1}\right)$ for $i=0,1, \ldots, n-2$

Degree 3 Splines: Cubic Splines $4 n-2$ Constraints

In each interval $\left[t_{i}, t_{i+1}\right]$ for $i=0,1, \ldots, n-1, S(x)$ looks like

$$
S_{i}(x)=a_{0, i}+a_{1, i} x+a_{2, i} x^{2}+a_{3, i} x^{3}
$$

- n intervals, 4 unknowns per interval
- $4 n$ unknowns
- $2 n$ constraints by continuity: $S_{i}\left(t_{i}\right)=y_{i}$ and $S_{i}\left(t_{i+1}\right)=y_{i+1}$ for $i=0,1, \ldots, n-1$
- $n-1$ constraints by continuity of $S^{\prime}(x): S_{i}^{\prime}\left(t_{i+1}\right)=S_{i+1}^{\prime}\left(t_{i+1}\right)$ for $i=0,1, \ldots, n-2$
- $n-1$ constraints by continuity of $S^{\prime \prime}(x): S_{i}^{\prime \prime}\left(t_{i+1}\right)=S_{i+1}^{\prime \prime}\left(t_{i+1}\right)$ for $i=0,1, \ldots, n-2$
- $4 n-2$ total constraints

Degree 3 Splines: Cubic Splines $4 n-2$ Constraints

In each interval $\left[t_{i}, t_{i+1}\right]$ for $i=0,1, \ldots, n-1, S(x)$ looks like

$$
S_{i}(x)=a_{0, i}+a_{1, i} x+a_{2, i} x^{2}+a_{3, i} x^{3}
$$

- n intervals, 4 unknowns per interval
- $4 n$ unknowns
- $2 n$ constraints by continuity: $S_{i}\left(t_{i}\right)=y_{i}$ and $S_{i}\left(t_{i+1}\right)=y_{i+1}$ for $i=0,1, \ldots, n-1$
- $n-1$ constraints by continuity of $S^{\prime}(x): S_{i}^{\prime}\left(t_{i+1}\right)=S_{i+1}^{\prime}\left(t_{i+1}\right)$ for $i=0,1, \ldots, n-2$
- $n-1$ constraints by continuity of $S^{\prime \prime}(x): S_{i}^{\prime \prime}\left(t_{i+1}\right)=S_{i+1}^{\prime \prime}\left(t_{i+1}\right)$ for $i=0,1, \ldots, n-2$
- $4 n-2$ total constraints
- This leaves 2 extra degrees of freedom. The cubic spline is not yet unique!

Degree 3 Spline: Cubic Spline

Some options:

- natural cubic spline: $S^{\prime \prime}\left(t_{0}\right)=S^{\prime \prime}\left(t_{n}\right)=0$
- fixed-slope: $S^{\prime}\left(t_{0}\right)=a, S^{\prime}\left(t_{n}\right)=b$
- not-a-knot: $S^{\prime \prime \prime}(x)$ continuous at t_{1} and t_{n-1}
- periodic: S^{\prime} and $S^{\prime \prime}$ are periodic at the ends: $S^{\prime}\left(t_{0}\right)=S^{\prime}\left(t_{n}\right)$ and $S^{\prime \prime}\left(t_{0}\right)=S^{\prime \prime}\left(t_{n}\right)$

Natural Cubic Spline

How do we find $a_{0, i}, a_{1, i}, a_{2, i}, a_{3, i}$ for each i ?
Consider knots t_{0}, \ldots, t_{n}. Follow our example with the following steps:
(1) Assume we knew $S^{\prime \prime}\left(t_{i}\right)$ for each i
(2) $S_{i}^{\prime \prime}(x)$ is linear, so construct it
(3) Get $S_{i}(x)$ by integrating $S_{i}^{\prime \prime}(x)$ twice
(9) Impose continuity
(5) Differentiate $S_{i}(x)$ to impose continuity on $S^{\prime}(x)$

Natural Cubic Spline: Step 1

Assume we knew $S^{\prime \prime}\left(t_{i}\right)$ for each i

We know $S^{\prime \prime}(x)$ is continuous. So assume

$$
\begin{aligned}
z_{i} & =S^{\prime \prime}\left(t_{i}\right) \text { for } i=1, \ldots, n-1 \\
z_{0} & =z_{n}=0 \text { conditions for natural cubic spline }
\end{aligned}
$$

(we don't actually know z_{i}, not yet at least)

Natural Cubic Spline: Step 2

$S_{i}^{\prime \prime}(x)$ is linear, so construct it
Since $S_{i}^{\prime \prime}(x)$ is linear, and

$$
\begin{aligned}
S_{i}^{\prime \prime}\left(t_{i}\right) & =z_{i} \\
S_{i}^{\prime \prime}\left(t_{i+1}\right) & =z_{i+1}
\end{aligned}
$$

we can write $S_{i}^{\prime \prime}(x)$ as

$$
\begin{aligned}
S_{i}^{\prime \prime}(x) & =\frac{z_{i+1}-z_{i}}{t_{i+1}-t_{i}}\left(x-t_{i}\right)+z_{i} \\
= & \frac{z_{i+1}\left(x-t_{i}\right)}{t_{i+1}-t_{i}}-\frac{z_{i}\left(x-t_{i}\right)}{t_{i+1}-t_{i}}+z_{i} \\
= & \frac{z_{i+1}\left(x-t_{i}\right)}{t_{i+1}-t_{i}}+\frac{z_{i}\left(t_{i+1}-x\right)}{t_{i+1}-t_{i}} \\
= & z_{i} \frac{t_{i+1}-x}{t_{i+1}-t_{i}}+z_{i+1} \frac{x-t_{i}}{t_{i+1}-t_{i}} \\
= & \frac{z_{i}}{h_{i}}\left(t_{i+1}-x\right)+\frac{z_{i+1}}{h_{i}}\left(x-t_{i}\right)
\end{aligned}
$$

where $h_{i}=t_{i+1}-t_{i}$

Natural Cubic Spline: Step 3

Get $S_{i}(x)$ by integrating $S_{i}^{\prime \prime}(x)$ twice

Take

$$
S_{i}^{\prime \prime}(x)=\frac{z_{i}}{h_{i}}\left(t_{i+1}-x\right)+\frac{z_{i+1}}{h_{i}}\left(x-t_{i}\right)
$$

and integrate once:

$$
S_{i}^{\prime}(x)=-\frac{z_{i}}{2 h_{i}}\left(t_{i+1}-x\right)^{2}+\frac{z_{i+1}}{2 h_{i}}\left(x-t_{i}\right)^{2}+\hat{C}_{i}
$$

twice:

$$
S_{i}(x)=\frac{z_{i}}{6 h_{i}}\left(t_{i+1}-x\right)^{3}+\frac{z_{i+1}}{6 h_{i}}\left(x-t_{i}\right)^{3}+\hat{C}_{i} x+\hat{D}_{i}
$$

adjust:

$$
S_{i}(x)=\frac{z_{i}}{6 h_{i}}\left(t_{i+1}-x\right)^{3}+\frac{z_{i+1}}{6 h_{i}}\left(x-t_{i}\right)^{3}+C_{i}\left(x-t_{i}\right)+D_{i}\left(t_{i+1}-x\right)
$$

Natural Cubic Spline: Step 4

Impose continuity
For each interval $\left[t_{i}, t_{i+1}\right]$, we require $S_{i}\left(t_{i}\right)=y_{i}$ and $S_{i}\left(t_{i+1}\right)=y_{i+1}$:

$$
\begin{aligned}
y_{i} & =S_{i}\left(t_{i}\right)=\frac{z_{i}}{6 h_{i}}\left(t_{i+1}-t_{i}\right)^{3}+\frac{z_{i+1}}{6 h_{i}}\left(t_{i}-t_{i}\right)^{3}+C_{i}\left(t_{i}-t_{i}\right)+D_{i}\left(t_{i+1}-t_{i}\right) \\
& =\frac{z_{i}}{6} h_{i}^{2}+D_{i} h_{i} \\
D_{i} & =\frac{y_{i}}{h_{i}}-\frac{h_{i}}{6} z_{i}
\end{aligned}
$$

and

$$
\begin{aligned}
y_{i+1} & =S_{i}\left(t_{i+1}\right)=\frac{z_{i}}{6 h_{i}}\left(t_{i+1}-t_{i+1}\right)^{3}+\frac{z_{i+1}}{6 h_{i}}\left(t_{i+1}-t_{i}\right)^{3}+C_{i}\left(t_{i+1}-t_{i}\right)+D_{i}\left(t_{i+1}-t_{i+1}\right) \\
& =\frac{z_{i+1}}{6}\left(h_{i}\right)^{2}+C_{i} h_{i} \\
C_{i} & =\frac{y_{i+1}}{h_{i}}-\frac{h_{i}}{6} z_{i+1}
\end{aligned}
$$

Natural Cubic Spline: Step 4

Impose continuity

So far we have
$S_{i}(x)=\frac{z_{i}}{6 h_{i}}\left(t_{i+1}-x\right)^{3}+\frac{z_{i+1}}{6 h_{i}}\left(x-t_{i}\right)^{3}+\left(\frac{y_{i+1}}{h_{i}}-\frac{h_{i}}{6} z_{i+1}\right)\left(x-t_{i}\right)+\left(\frac{y_{i}}{h_{i}}-\frac{h_{i}}{6} z_{i}\right)\left(t_{i+1}-x\right)$
Where the values $t_{i}, y_{i}, h_{i}=t_{i+1}-t_{i}$ are given as data and only the z_{i} remain unknown.

Natural Cubic Spline: Step 5

Differentiate $S_{i}(x)$ to impose continuity on $S^{\prime}(x)$

$$
S_{i}^{\prime}(x)=-\frac{z_{i}}{2 h_{i}}\left(t_{i+1}-x\right)^{2}+\frac{z_{i+1}}{2 h_{i}}\left(x-t_{i}\right)^{2}+\frac{y_{i+1}}{h_{i}}-\frac{h_{i}}{6} z_{i+1}-\frac{y_{i}}{h_{i}}+\frac{h_{i}}{6} z_{i}
$$

We need $S_{i}^{\prime}\left(t_{i}\right)=S_{i-1}^{\prime}\left(t_{i}\right)$ for $i=1, \ldots, n-1$:

$$
\begin{gathered}
S_{i}^{\prime}\left(t_{i}\right)=-\frac{h_{i}}{6} z_{i+1}-\frac{h_{i}}{3} z_{i}+\underbrace{\frac{1}{h_{i}}\left(y_{i+1}-y_{i}\right)}_{b_{i}} \\
S_{i-1}^{\prime}\left(t_{i}\right)=\frac{h_{i-1}}{6} z_{i-1}+\frac{h_{i-1}}{3} z_{i}+\underbrace{\frac{1}{h_{i-1}}\left(y_{i}-y_{i-1}\right)}_{b_{i-1}}
\end{gathered}
$$

Thus z_{i} is defined by

$$
h_{i-1} z_{i-1}+2\left(h_{i}+h_{i-1}\right) z_{i}+h_{i} z_{i+1}=6\left(b_{i}-b_{i-1}\right)
$$

Natural Cubic Spline: Step 6

solve

z_{i} is defined by

$$
h_{i-1} z_{i-1}+2\left(h_{i}+h_{i-1}\right) z_{i}+h_{i} z_{i+1}=6\left(b_{i}-b_{i-1}\right)
$$

- This is $n+1$ equations, $n+1$ unknowns (though $z_{0}=z_{n}=0$ already)
- an $(n+1) \times(n+1)$ tridiagonal system

$$
\left[\begin{array}{cccccccc}
1 & & & & & \\
h_{0} & u_{1} & h_{1} & & & & \\
& h_{1} & u_{2} & h_{2} & & & \\
& & h_{2} & u_{3} & h_{3} & & & \\
& & & \ddots & \ddots & \ddots & & \\
& & & & h_{n-3} & u_{n-2} & h_{n-2} & \\
& & & & & h_{n-2} & u_{n-1} & h_{n-1} \\
& & & & \\
u_{i} & =2\left(h_{i}+h_{i-1}\right) \\
& & & v_{i} & =6\left(b_{i}-b_{i-1}\right)
\end{array}\right]\left[\begin{array}{c}
z_{0} \\
z_{1} \\
z_{2} \\
z_{3} \\
\vdots \\
z_{n-2} \\
z_{n-1} \\
z_{n}
\end{array}\right]=\left[\begin{array}{c}
0 \\
v_{1} \\
v_{2} \\
v_{3} \\
\vdots \\
v_{n-2} \\
v_{n-1} \\
0
\end{array}\right]
$$

Example

Find the natural cubic spline for | x | -1 | 0 | 1 |
| :---: | :---: | :---: | :---: |
| y | 1 | 2 | -1 |

Since the number of nodes equal 3 then $n+1=3$ or $n=2$.
(1) Determine $h_{i}=t_{i+1}-t_{i}, b_{i}=\frac{y_{i+1}-y_{i}}{h_{i}}, u_{i}=2\left(h_{i}+h_{i-1}\right), v_{i}=6\left(b_{i}-b_{i-1}\right)$

$$
h=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad b=\left[\begin{array}{c}
1 \\
-3
\end{array}\right] \quad u=[4] \quad v=[-24]
$$

(2) Solve

$$
\left[\begin{array}{lll}
1 & & \\
1 & 4 & 1 \\
& & 1
\end{array}\right]\left[\begin{array}{l}
z_{0} \\
z_{1} \\
z_{2}
\end{array}\right]=\left[\begin{array}{c}
0 \\
-24 \\
0
\end{array}\right]
$$

(3) Result:

$$
\left[\begin{array}{l}
z_{0} \\
z_{1} \\
z_{2}
\end{array}\right]=\left[\begin{array}{c}
0 \\
-6 \\
0
\end{array}\right]
$$

example

Find the natural cubic spline for | x | -1 | 0 | 1 |
| :---: | :---: | :---: | :---: |
| y | 1 | 2 | -1 |

(1) Plug z_{i} into

$$
\begin{aligned}
S_{i}(x)= & \frac{z_{i}}{6 h_{i}}\left(t_{i+1}-x\right)^{3}+\frac{z_{i+1}}{6 h_{i}}\left(x-t_{i}\right)^{3}+\left(\frac{y_{i+1}}{h_{i}}-\frac{h_{i}}{6} z_{i+1}\right)\left(x-t_{i}\right) \\
& +\left(\frac{y_{i}}{h_{i}}-\frac{h_{i}}{6} z_{i}\right)\left(t_{i+1}-x\right) \\
& S(x)= \begin{cases}-(x+1)^{3}+3(x+1)-x & -1 \leqslant x<0 \\
-(1-x)^{3}-x+3(1-x) & 0 \leqslant x<1\end{cases}
\end{aligned}
$$

Bézier Curves

- Different than splines
- Similar process
- Does not require interpolation, only that the curve stay within the convex hull off the control points
- Can move one point with only local effect

Parametric Form

A function $y=f(x)$ can be expressed in parametric form. The parametric form represents a relationship between x and y through a parameter t :

$$
x=F_{1}(t) \quad y=F_{2}(t)
$$

Example

The equation for a circle can be written in parametric form as

$$
\begin{aligned}
& x=r \cos (\theta) \\
& y=r \sin (\theta)
\end{aligned}
$$

(x, y) is now expressed as $(x(t), y(t))$. We will use $0 \leqslant t \leqslant 1$.

Bézier Points

Consider a set of control points:

$$
p_{i}=\left(x_{i}, y_{i}\right), i=0, \ldots, n
$$

These may be in any order.
So $p_{i}=\left[\begin{array}{l}x_{i} \\ y_{i}\end{array}\right]$ or in parametric form the set of points is expressed as

$$
P(t)=\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
$$

Bernstein Polynomial

The polynomials

$$
q(t)=(1-t)^{n-i} t^{i}
$$

have the nice property that for $0<i<n, q(0)=q(1)=0$. If we scale them with

$$
\binom{n}{i}=\frac{n!}{i!(n-i)!}
$$

we have the Bernstein polynomials:

$$
b_{i, n}(t)=\binom{n}{i}(1-t)^{n-i} t^{i}
$$

Among the interesting properties is that

$$
\sum_{i=0}^{n} b_{i, n}(t)=(t+(1-t))^{n}=1
$$

(hint: binomial theorem)

Bernstein Polynomial

The n th-degree Bézier Polynomial through the $n+1$ points is given by

$$
p(t)=\sum_{i=0}^{n}\binom{n}{i}(1-t)^{n-i} t^{i} p_{i}
$$

where

$$
\binom{n}{i}=\frac{n!}{i!(n-i)!}
$$

Quadratic Bézier Curve

For $n=2$ (quadratic) we have

$$
\begin{aligned}
p(t) & =\sum_{i=0}^{2}\binom{2}{i}(1-t)^{2-i} t^{i} p_{i} \\
& =\binom{2}{0}(1-t)^{2} p_{0}+\binom{2}{1}(1-t)^{1} t^{1} p_{1}+\binom{2}{2} t^{2} p_{2} \\
& =(1-t)^{2} p_{0}+2(1-t) t p_{1}+t^{2} p_{2}
\end{aligned}
$$

and replacing p_{0}, p_{1}, p_{2} with their corresponding values we get,

$$
\begin{aligned}
& x(t)=(1-t)^{2} x_{0}+2(1-t) t x_{1}+t^{2} x_{2} \\
& y(t)=(1-t)^{2} y_{0}+2(1-t) t y_{1}+t^{2} y_{2}
\end{aligned}
$$

Quadratic Bézier Curve

We can write our quadratic Bezier formula as,

$$
\begin{aligned}
p(t) & =\sum_{i=0}^{2}\binom{2}{i}(1-t)^{2-i} t^{i} p_{i} \\
& =(1-t)^{2} p_{0}+2(1-t) t p_{1}+t^{2} p_{2} \\
& =(1-t)\left[(1-t) p_{0}+t p_{1}\right]+t\left[(1-t) p_{1}+t p_{2}\right]
\end{aligned}
$$

and if we denote the points $Q_{0}(t)=(1-t) p_{0}+t p_{1}$ and $Q_{1}(t)=(1-t) p_{1}+t p_{2}$ then we can re-write the formula above as,

$$
p(t)=(1-t) Q_{0}(t)+t Q_{1}(t)
$$

which can be viewed as the top figure on the following slide.

Bézier Curves

points Q_{0} and Q_{1} vary linearly from $P_{0} \rightarrow P_{1}$ and $P_{1} \rightarrow P_{2}$
Q^{\prime} s vary linearly, R^{\prime} s vary quadratically
all within the hull of the control points

Cubic Bézier Curve

For $n=3$ (cubic) we have

$$
\begin{aligned}
& x(t)=(1-t)^{3} x_{0}+3(1-t)^{2} t x_{1}+3(1-t) t^{2} x_{2}+t^{3} x_{3} \\
& y(t)=(1-t)^{3} y_{0}+3(1-t)^{2} t y_{1}+3(1-t) t^{2} y_{2}+t^{3} y_{3}
\end{aligned}
$$

Cubic Bézier Curve

$$
\begin{aligned}
& x(t)=(1-t)^{3} x_{0}+3(1-t)^{2} t x_{1}+3(1-t) t^{2} x_{2}+t^{3} x_{3} \\
& y(t)=(1-t)^{3} y_{0}+3(1-t)^{2} t y_{1}+3(1-t) t^{2} y_{2}+t^{3} y_{3}
\end{aligned}
$$

Notice that $(x(0), y(0))=p_{0}$ and $(x(1), y(1))=p_{3}$. So the Bézier curve interpolates the endpoints but not the interior points.

Bézier Curves

$$
\begin{aligned}
& x(t)=(1-t)^{3} x_{0}+3(1-t)^{2} t x_{1}+3(1-t) t^{2} x_{2}+t^{3} x_{3} \\
& y(t)=(1-t)^{3} y_{0}+3(1-t)^{2} t y_{1}+3(1-t) t^{2} y_{2}+t^{3} y_{3}
\end{aligned}
$$

Notice:
(1) $P(0)=p_{0}$ and $P(1)=p_{3}$
(2) The slope of the curve at $t=0$ is a secant:

$$
\frac{d y}{d x}=\frac{d y}{d t} \frac{d t}{d x}=\frac{3\left(y_{1}-y_{0}\right)}{3\left(x_{1}-x_{0}\right)}=\frac{y_{1}-y_{0}}{x_{1}-x_{0}}
$$

(3) The slope of the curve at $t=1$ is a secant between the last two control points.
(1) The curve is contained in the convex hull of the control points

Bézier Curves

$$
\begin{aligned}
& x(t)=(1-t)^{3} x_{0}+3(1-t)^{2} t x_{1}+3(1-t) t^{2} x_{2}+t^{3} x_{3} \\
& y(t)=(1-t)^{3} y_{0}+3(1-t)^{2} t y_{1}+3(1-t) t^{2} y_{2}+t^{3} y_{3}
\end{aligned}
$$

Easier construction given points p_{0}, \ldots, p_{3} :

$$
P(t)=\left[\begin{array}{llll}
t^{3} & t^{2} & t^{1} & t^{0}
\end{array}\right]\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
p_{0} \\
p_{1} \\
p_{2} \\
p_{3}
\end{array}\right]
$$

see bezier_demo.m from Mathworks File Exchange http://www.math.psu.edu/dlittle/java/parametricequations/ beziercurves/index.html

Vector Graphics, Fonts, Adobe

Vector Graphics include primitives like

- lines, polygons
- circles
- Bézier curves
- Bézier splines or Bezigons
- text (letters created from Bézier curves)

Flash Animation

- Use Bézier curves to construct animation path

Microsoft Paint, Gimp, etc

- Use Bézier curves to draw curves
- http://msdn2.microsoft.com/en-us/library/ms534244.aspx Graphics
- Use Bézier surfaces to draw smooth objects

Bézier Surfaces

Take (n, m). That is, $(n+1, m+1)$ control points $p_{i, j}$ in 2 d . Then let

$$
\mathbf{P}(t, s)=\sum_{i=0}^{n} \sum_{j=0}^{m} \phi_{n i}(t) \phi_{m j}(s) \mathbf{p}_{i j}
$$

Where, again, $\phi_{n i}$ are the Bernstein polynomials:

$$
\phi_{n i}(t)=\binom{n}{i}(1-t)^{n-i} t^{i}
$$

- again, all within the convex hull of control points
- http://www.math.psu.edu/dlittle/java/parametricequations/ beziersurfaces/index.html

