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Fonts == interpolation

@ how do we “contain” our interpolation?

@ splines

@ Postscript (Adobe): rasterization on-the-fly. Fonts, etc are defined as
cubic Bézier curves (linear interpolation between lower order Bézier
curves)

@ TrueType (Apple): similar, quadratic Bézier curves, thus cannot convert
from TrueType to PS (Type1) losslessly
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Why Splines?

@ truetype fonts, postscript,
metafonts

@ graphics surfaces

@ smooth surfaces are needed

@ how do we interpolate
smoothly a set of data?

@ keywords: Bezier Curves,
splines, B-splines, NURBS

@ basic tool: piecewise

- interpolation
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Piecewise Polynomial

A function f(x) is considered a piecewise polynomial on [a, b] if there exists a
(finite) partition P of [, b] such that f(x) is a polynomial on each (t;,t11) € P.
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What do we want?

@ we would like the piecewise polynomial to do two things

@ interpolate (or be close to) some set of data points
@ look nice (smooth)

@ one option is called a spline
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Splines
@ A spline is a piecewise polynomial with a certain level of smoothness.
@ take Matlab:
plot(1:7,rand(1,7))

@ this is linear and continuous, but not very smooth

@ the function changes behavior at knots(also called nodes)
x=1Lx=2...,x=7
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Degree 1 Splines

definition

A function S(x) is a spline of degree 1 if:
@ The domain of S(x) is an interval [a, b]
@ S(x) is continuous on [a, b]

© There is a partitiona =ty < t; < --- < t, = b such that S(x) is linear on
each subinterval [t;, t;1].

X x € [-1,0]

S(x)=<0 x € (0,1) T
2x—2 x€[1,2] Y

I
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Degree 1 Splines

Given data ty,...,t, and yo, ..., y,, how do we form a spline?

We need two things to hold in the interval [a, b] = [to, t,]:

Q S(ti)=yifori=0,...,n

Q S(x)=Si(x) =aix+bjforxc t,tiilandi=0,...,n—1
Write S;(x) in point-slope form

Si(x) = yi +mi(x — t;)
]/z+1 yi(

x—t)
tz+1 *tz l
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S

Evaluation of a Degree 1 Splines: Computing S(x)

input f,y vectors of data
input evaluation location x
find interval i with x € [#,ti 1]

S(x) =yi + (x —t;) ((yir1 —vi)/(tisa — 1))
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Determining the coefficients of S;(x) for a Degree 1
Spline

Input n + 1 data points t, ..., t.Y0, ..., Yn

Si(x) view:

@ in each interval we have S(x) = S;(x) = a;x + b; for x € [t;, t;11], and
i=0,...,n—1

@ 2 unknowns g;, b; per interval [t;, t; 1]

@ we have 5;(t;) =y; and S;(fit1) = yip1, fori=0,...,n— 1.
S(x) view:

@ 2n total unknowns

@ 2 constraints (equations) per interval gives 2 total constraints
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Degree 2 Splines

definition

A function S(x) is a spline of degree 2 if:
@ The domain of S(x) is an interval [a, b]
@ S5(x) is continuous on [a, b]
@ S’'(x) is continuous on [a, b]

© There is a partitiona =ty < t; < --- < t, = b such that S(x) is quadratic
on each subinterval [, ;1 1].
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Sn—l(x)
foreachi=0,1,...,n—1 we have

X € [ty—1, ]

Si(x) = a,'xz +bix +c;
What are a;, b;, ¢;?
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Degree 2 Splines

3 unknowns a;, b;, ¢; in each interval [t;,t;,1] fori=0,1,...,n—1
@ 3n total unknowns

@ 2n constraints (equations) for matching up the input data (continuity of
S(x)):
Silt) =yi, Si(tit1) =yin
@ n — 1 interior points require continuity of S’ (x):
Si/(ti+1) = Sl{+1(ti+1) fOI’ l = 0,2, A (e 2
@ but this is just n — 1 constraints
@ total of 3n — 1 constraints

@ extra consraint: S’(ty) =given, for example.
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Degree 3 Splines: Cubic splines

definition

A function S(x) is a spline of degree 3 if:
@ The domain of S(x) is an interval [a, b]
@ S5(x) is continuous on [a, b]
@ S’'(x) is continuous on [a, b]
© S’ (x) is continuous on [a, b]

@ There is a partitiona =ty < t; < --- < t, = b such that S(x) is cubic on
each subinterval [t;, t;1].
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Degree 3 Splines: Cubic Splines 4n Unknowns

In each interval [t;,t;1] fori =0,1,...,n —1, S(x) looks like

Si(x) =ap; +a1:x + az,ixz + ag,,-x3

@ n intervals, 4 unknowns per interval
@ 4n unknowns

T. Gambill (UIUC) CS 357 April 12, 2011

I

15/41



Degree 3 Splines: Cubic Splines 4n — 2 Constraints
In each interval [t;,t;1] fori =0,1,...,n—1, S(x) looks like

S,-(x) =dag,; + a1,iX + az,ixz + a331x3

@ n intervals, 4 unknowns per interval
@ 4n unknowns

I
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Degree 3 Splines: Cubic Splines 4n — 2 Constraints

In each interval [t;,t;1] fori =0,1,...,n—1, S(x) looks like

S,-(x) =dag,; + a1,iX + Elz‘ixz + a331x3

@ n intervals, 4 unknowns per interval
@ 4n unknowns

@ 2n constraints by continuity: S;(t;) = y; and S;(ti+1) = yi41 for
i=0,1,...,n—1
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Degree 3 Splines: Cubic Splines 4n — 2 Constraints

In each interval [t;,t;1] fori =0,1,...,n—1, S(x) looks like

S,-(x) =dag,; + a1,iX + Elzyixz + a331x3

@ n intervals, 4 unknowns per interval
@ 4n unknowns

@ 2n constraints by continuity: S;(t;) = y; and S;(ti+1) = yi41 for
i=0,1,...,n—1

@ n — 1 constraints by continuity of S’(x): S/(ti11) = S/

i+1(ti+1) for
i=0,1,...,n—2
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Degree 3 Splines: Cubic Splines 4n — 2 Constraints

In each interval [t;,t;1] fori =0,1,...,n—1, S(x) looks like

S,-(x) =dag,; + a1,iX + Elzyixz + a331x3

@ n intervals, 4 unknowns per interval
@ 4n unknowns

@ 2n constraints by continuity: S;(t;) = y; and S;(ti+1) = yi41 for
i=0,1,...,n—1

@ n — 1 constraints by continuity of S’(x): S/ (ti;1) = S/, (ti11) for
i=0,1,...,.n—2

@ n — 1 constraints by continuity of S (x): S/’ (tiy1) = S/, ; (tiy1) for
i=0,1,...,.n—2
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Degree 3 Splines: Cubic Splines 4n — 2 Constraints

In each interval [t;,t;1] fori =0,1,...,n—1, S(x) looks like

S,-(x) =dag,; + a1,iX + Elzyixz + a331x3

n intervals, 4 unknowns per interval

4n unknowns

2n constraints by continuity: S;(t;) = y; and S;(ti+1) = yi41 for
i=0,1,...,n—1

@ n — 1 constraints by continuity of S’(x): S/ (ti;1) = S/, (ti11) for
i=0,1,...,.n—2

@ n — 1 constraints by continuity of S (x): S/’ (tiy1) = S/, ; (tiy1) for
i=0,1,...,.n—2

4n — 2 total constraints
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Degree 3 Splines: Cubic Splines 4n — 2 Constraints

In each interval [t;,t;1] fori =0,1,...,n—1, S(x) looks like

S,-(x) =dag,; + a1,iX + a2,ix2 + tl3’ix3

n intervals, 4 unknowns per interval

4n unknowns

2n constraints by continuity: S;(t;) = y; and S;(ti+1) = yi41 for
i=0,1,...,n—1

@ n — 1 constraints by continuity of S’(x): S/ (ti;1) = S/, (ti11) for
i=0,1,...,.n—2

@ n — 1 constraints by continuity of S (x): S/’ (tiy1) = S/, ; (tiy1) for
i=0,1,...,.n—2

4n — 2 total constraints

This leaves 2 extra degrees of freedom. The cubic spline is not yet
unique! J
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Degree 3 Spline: Cubic Spline

Some options:
@ natural cubic spline: S (tg) = S”(t,) =0
o fixed-slope: S'(ty) =a, S'(t,) =b
@ not-a-knot: S"”(x) continuous at t; and t,_;

@ periodic: S’ and S” are periodic at the ends: S’(ty) = S’(t,) and
S"(ty) = S"(ty)
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Natural Cubic Spline

How do we find ag ;, a1 ;, a2 4, a3 ; for each i?

Consider knots ty, ..., t,. Follow our example with the following steps:
@ Assume we knew S”(t;) for each i
© S/ (x) is linear, so construct it
Q Get S;(x) by integrating S/ (x) twice
© Impose continuity
@ Differentiate S;(x) to impose continuity on S’(x)

1
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Natural Cubic Spline: Step 1

Assume we knew S” (t;) for each i

We know S”(x) is continuous. So assume

zi = S'(t)fori=1,...,n—1
zo = z, =0 conditions for natural cubic spline

(we don’t actually know z;, not yet at least)
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Since S/’ (x) is linear, and

Si'(t) =z

Si”(ti+1) = Zit1
we can write S/'(x) as

Zi+1—Zi _
tip1—t; (X

ti) + zi
_ zip(x=t)  zi(x—t) )
T i ot T
_ zipa(x—t) | ziltin—x)
tip1—t; tip1—t;
t X x—t
LH_ Xl
it T A
L(t;
where ; = t;,1 — t;

= %(tz+1—x)+&"—(X—t)

1 .
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Natural Cubic Spline: Step 3

Get S;(x) by integrating S/’ (x) twice

Take . -~
Si//(x) = i(tl+1 _x) + Z; (x_tl)
and integrate once:
Zi Zi ~
Si2) = = g (i =P+ St (x = 1P+ G
twice: . Zis
(x) = 2L N e o OV F
Si(x) 6hi(tz+1 x)” + 6h,( ti)” + Cix + D;
adjust:
Zji Zj
Silx) = g ltivn =37+ b (x = )+ Cilx = ) + Di(tia — %)
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Natural Cubic Spline: Step 4

Impose continuity
For each interval [t;, t;11], we require S;(t;) = y; and S;(tit1) = Y1t

yi = Si(t;) (i1 — 1) + ‘7‘6;1 (ti — t)° + Cit; — t;) + Diltit1 — ;)

_ A

6k
Zi, o

= gl’ll + Dl‘hi

h;

Di:%—gzi

and
Zj Zj
Yir1 = Siltin1) = o (tig1 — tip1)® + o (bieg — ) + Cilbinr — £) + Dyiltipr — tia)
6h; 6h;
= 2 )+ Cily

i hi
Ci= yhfl g

I
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Natural Cubic Spline: Step 4

Impose continuity

So far we have

() = 2 by P 2 g (YL T Y oy (VB (g
$ix) = gt o (ot (B = B ) (et (B~ ) ()

Where the values t;,y;, h; = t; 1 — t; are given as data and only the z; remain
unknown.

1
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Natural Cubic Spline: Step 5

Differentiate S; (x) to impose continuity on S’ (x)

_Zi Zit1
2h; 2h;
We need S/(t;) =S/ ;(t;) fori=1,...,n—1:

Si(x) = (tiy1 —x)* + (x—t)* +

h; h; 1
Silt) = *glziﬂ - 5121' + E(%H —Yi)
N
b;
hi 1 hi_ 1

! = L . . P L1y
Si—](tl) 6 Zi—1 + 3 zZi + hifl (]/1 %71)
%—/

b

Thus z; is defined by

hi—1zi—1 4+ 2(hi + hi—1)zi + hiziz1 = 6(b; — bi—1)

T. Gambill (UIUC) CS 357 April 12, 2011
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Natural Cubic Spline: Step 6

solve

z; is defined by

hi—1zi—1 4+ 2(hi + hi—1)zi + hiziz1 = 6(b; — bi—1)

@ This is n 4+ 1 equations, n + 1 unknowns (though zy = z,, = 0 already)

@ an (n+1) x (n+ 1) tridiagonal system

1
ho ur Iy
hi up
hy

T. Gambill (UIUC)

hy
uz  hs
hn—3
Ui
(4

Up—2 hn—Z
hu—n up—1 hy
1

2(hi + hi—1)
= 6(bi—bi1)

CS 357
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23
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Zp—2
Zn—1

Zn

0
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(%)
U3

Up—2
On—1
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Example

, , , x|-1 0 1
Find the natural cubic spline for y [T 2 A

Since the number of nodes equal 3thenn+1=3o0rn =2.
© Determine h; = ti 1 —t;, b = ﬁﬂ, u; = 2(hi +hi—1), v; = 6(b; — bi_1)

=l o= -l o=l

@ Solve

© Result:

1
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example

Find the natural cubic spline for ad ‘ -11 g _11
@ Plug z; into
o Zi 3 Ziw a3 (Y i
Si(x) 6hi(tl+1 x)” + 6]’1,( t;) +< I 6Zz+l> (x—t;)
ks
+ <“Zl - 6721') (ti1 —x)
S(x) = —(x+1P+3x+1)—x —-1<x<0
]l -(1—xP—x+31—-x) 0<x<1
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Bézier Curves

@ Different than splines

@ Similar process

@ Does not require interpolation, only that the curve stay within the convex
hull off the control points

@ Can move one point with only local effect

v QPI=XIYY)

T .pO:(xO,yO)

o3 . . . . .
04 05 os o7 08 03 1 j[
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Parametric Form

A function y = f(x) can be expressed in parametric form. The parametric form
represents a relationship between x and y through a parameter t:

x = Fq(t) y =FEx(t)

The equation for a circle can be written in parametric form as

x =rcos(0)
y =rsin(0)

(x,y) is now expressed as (x(t),y(t)). We willuse 0 <t < 1.

I
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Bézier Points

Consider a set of control points:

pi=(x,yi), i=0,...,n

These may be in any order.

Sop; = [;l] or in parametric form the set of points is expressed as
1

1
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Bernstein Polynomial

The polynomials N
g(t) = (1— e
have the nice property that for 0 < i < n, q(0) =g(1) =0.

If we scale them with
ny\ n!
i) iln—i)

we have the Bernstein polynomials:

bin(t) = (’Z) (1— it

Among the interesting properties is that

Zb,,, (t+(1—1))" =1

(hint: binomial theorem)
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The nth-degree Bézier Polynomial through the n + 1 points is given by

n

plt) = ; (Z’) (1—1)"tp;
where
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Quadratic Bézier Curve

For n = 2 (quadratic) we have

2

pin=3 (3)a-rn

i=0

- (g) (1—1)po + G) (1—t''p; + G) p;

= (1—1)%po +2(1 — t)tp + py

and replacing po, p1, p2 With their corresponding values we get,

x(H) = (1—1)2x0 4 2(1 — Htxy + xz
(1—1)yo +2(1 — itys + £y

<

—_
~~

—
Il
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Quadratic Bézier Curve

We can write our quadratic Bezier formula as,

2 1 N
pit) =) <l> (1—1)*"tp;
i=0
= (1—1t)%py +2(1 — t)tp; + *p2
= (1—-1)[(1 —t)po + tp1] + (1 — t)p1 + tp2]

and if we denote the points Qo(t) = (1 — t)po + tp1 and Q1 (t) = (1 —t)p1 + tp2
then we can re-write the formula above as,

p(t) = (1 —1)Qo(t) + tQ1(£)

which can be viewed as the top figure on the following slide.

1
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Bézier Curves

T. Gambill (UIUC)

points Qp and Qp vary linearly
from Py — P; and P; — P,

Q’s vary linearly, R’s vary
quadratically

all within the hull of the control
points

CS 357 April 12, 2011
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For n = 3 (cubic) we have

= ®
—_
-~ e
— =
-

(1—1)%x0 +3(1 — £)%tx1 + 3(1 — 1) Pxp + £x3
= (1 -3y +3(1 — 1)ty +3(1 — )Pys + Py

«0O0>» «F»r « > « Q>
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Cubic Bézier Curve

x(t) = (1—1)%x0 +3(1 — £)%tx1 + 3(1 — 1) Pxp + 23
y() = (1= 1%y +3(1 — 1)*ty1 + 3(1 — )Py2 + Pys
Notice that (x(0), y(0)) = po and (x(1),y(1)) = ps. So the Bézier curve

interpolates the endpomts but not the interior points.
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Bézier Curves

x(t) = (1 —)%xg + 3(1 — £)%txy + 3(1 — H)Pxp + x5
y(t) = (1 — )%y +3(1 — t)*tys +3(1 — )Py, + £y3
Notice:

@ P(0) =poand P(1) =p;
@ The slope of the curve at t = 0 is a secant:

&y _dydt _3n—w) _ -
dx a dt dx B 3(X1 —X()) X1 — Xo

@ The slope of the curve at t = 1 is a secant between the last two control
points.

@ The curve is contained in the convex hull of the control points

1
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Bézier Curves

x(t) = (1 —1)%x0 + 3(1 — £)%txy + 3(1 — H)Pxp + x5
y(1) = (1= 1%y +3(1 — 1)*ty1 + 3(1 — )Py2 + Pys

Easier construction given points py, . .., p3:

-1 3 =3 1] [po
3 -6 3 0| |m

— [43 2 1 0
Pi)=[F & ¢ ]| 5 5 5 n
1 0 0 0f |ps

see bezier_demo.m from Mathworks File Exchange
http://www.math.psu.edu/dlittle/java/parametricequations/
beziercurves/index.html
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Vector Graphics, Fonts, Adobe

Vector Graphics include primitives like

@ lines, polygons

@ circles

@ Bézier curves

@ Bézier splines or Bezigons

@ text (letters created from Bézier curves)
Flash Animation

@ Use Bézier curves to construct animation path
Microsoft Paint, Gimp, etc

@ Use Bézier curves to draw curves

@ http://msdn2.microsoft.com/en-us/library/ms534244.aspx
Graphics

@ Use Bézier surfaces to draw smooth objects
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Bézier Surfaces

Take (n,m). Thatis, (n+1,m + 1) control points p;; in 2d. Then let

P(t,s) =) > built)uils)py

i=0 j=0
Where, again, ¢,; are the Bernstein polynomials:

’7) (1— "¢

1

ouilt) = (

@ again, all within the convex hull of control points

@ http://www.math.psu.edu/dlittle/java/parametricequations/
beziersurfaces/index.html
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