
Lecture 10
Sparse Matrices, Iterative Methods

T. Gambill

Department of Computer Science
University of Illinois at Urbana-Champaign

March 15, 2011

T. Gambill (UIUC) CS 357 March 15, 2011 1 / 59



An application

Latent semantic analysis (LSA) (also called LSI - Latent semantic indexing for
information retrieval ) analyzes two-mode data. Looks at relationships
between documents and terms.

natural language processing
information retrieval
information filtering
textual machine learning

Document-term matrix:
Document1(d1) = ”I love numerical analysis”
Document1(d2) = ”I do not love numerical analysis, but I love linear algebra.”

I love numerical linear algebra
d1 1 1 1 0 0
d2 2 2 1 1 1

T. Gambill (UIUC) CS 357 March 15, 2011 2 / 59



An application

I love numerical linear algebra
d1 1 1 1 0 0
d2 2 2 1 1 1

One method for weights: Term Count Model
Variation: Term Frequency-Inverse Document Frequency; weight the entries
inversely, highlighting infrequent terms

Let X be the matrix of occurrences (or the inverse).

X =
[
d1 | d2 | . . . | dn

]
=


t1
t2
...
tn


Now each row ti will be a vector relating a term to all documents. Each
column di will be a vector relating a document to all terms.

T. Gambill (UIUC) CS 357 March 15, 2011 3 / 59



An application

X =

x1,1 . . . x1,n
...

. . .
...

xm,1 . . . xm,n


In general X has many zeros
a dot product of the rows titT

j gives the correlation between terms over
the documents
XXT gives a cumulative view of the correlation
same with XTX
singular value decompositions, eigenvalue analysis, etc give other
information

T. Gambill (UIUC) CS 357 March 15, 2011 4 / 59



Sparse Matrices
ack: Y. Saad

Vague definition: matrix with few nonzero entries
For all practical purposes: an m× n matrix is sparse if it has
O(min (m, n)) nonzero entries.
This means roughly a constant number of nonzero entries per row and
column

T. Gambill (UIUC) CS 357 March 15, 2011 5 / 59



Sparse Matrices
ack: Y. Saad

Other definitions use a slow growth of nonzero entries with respect to n or
m.
Wilkinson’s Definition: “..matrices that allow special techniques to take
advantage of the large number of zero elements.” (J. Wilkinson)”
A few applications which lead to sparse matrices: Structural Engineering,
Computational Fluid Dynamics, Reservoir simulation, Electrical
Networks, optimization, data analysis, information retrieval (LSI), circuit
simulation, device simulation, . . .

T. Gambill (UIUC) CS 357 March 15, 2011 6 / 59



Sparse Matrices: The Goal

To perform standard matrix computations economically i.e., without
storing the zeros of the matrix.
For typical Finite Element /Finite difference matrices, number of nonzero
elements is O(n).

Example
To add two square dense matrices of size n requires O(n2) operations. To add
two sparse matrices A and B requires O(nnz(A) + nnz(B)) where nnz(X) =
number of nonzero elements of a matrix X.

remark
A−1 is usually dense, but L and U in the LU factorization may be reasonably
sparse (if a good technique is used).

T. Gambill (UIUC) CS 357 March 15, 2011 7 / 59



Iterative solution of Ax = b

Principle goal: solve
Ax = b

where A ∈ Rn×n, x, b ∈ Rn

Assumption: A is very sparse
General approach: iteratively improve the solution
Given x0, ultimate “correction” is

x1 = x0 + e0

where e0 = x − x0, thus

Ae0 = Ax − Ax0

e0 = A−1(Ax − Ax0)

x1 = x0 + e0 = x0 + A−1(Ax − Ax0) = x0 + A−1r0

since r0 = b − Ax0.

T. Gambill (UIUC) CS 357 March 15, 2011 8 / 59



Goal

Principle difficulty: how do we “approximate” A−1r or reformulate the
iteration?
One simple idea:

x1 = x0 + Â−1r0 where Â−1 is an approximation to A−1

operation is inexpensive if r0 is inexpensive
requires very fast sparse mat-vec (matrix-vector multiply) Ax0

T. Gambill (UIUC) CS 357 March 15, 2011 9 / 59



Sparse Matrices

So how do we store A?
Fast mat-vec is certainly important; also ask

I what type of access (rows, cols, diag, etc)?
I dynamic allocation?
I transpose needed?
I inherent structure?

Unlike dense methods, not a lot of standards for iterative
I dense BLAS have been long accepted
I sparse BLAS still iterating

Even data structures for dense storage not as obvious
Sparse operations have low operation/memory reference ratio

T. Gambill (UIUC) CS 357 March 15, 2011 10 / 59



Sparse Matrix Qualification

Matrix Market attempts to classify the sparse matrix.

Matrix Market
http://math.nist.gov/MatrixMarket/

First Qualification (type of values and number of values):

identifier description
Real All entries are float
Complex All entries are a pair of float
Integer All entries are int
Pattern Matrix is a pattern. Actual entries are omitted
Parallel Parallel structure is identified

T. Gambill (UIUC) CS 357 March 15, 2011 11 / 59

http://math.nist.gov/MatrixMarket/


Sparse Matrix Qualification

Second Qualification (interpreting values):

identifier description
General A has no symmetry, no symmetry is utilized,

or A is not square
Symmetric aij = aji; only entries on the diagonal

and below(or above) are stored.
Skew-Symmetric aij = −aji; only entries below (or above)

the diagonal (= 0) are stored.
Hermitian aij = āji; only entries on the diagonal

and below (or above) are stored.

see “The Matrix Market Exchange Formats: Initial Design” by Boisvert, Pozo, Remington

T. Gambill (UIUC) CS 357 March 15, 2011 12 / 59



Popular Storage Structures

DNS Dense ELL Ellpack-Itpack
BND Linpack Banded DIA Diagonal
COO Coordinate BSR Block Sparse Row
CSR Compressed Sparse Row SSK Symmetric Skyline
CSC Compressed Sparse Column BSR Nonsymmetric Skyline
MSR Modified CSR JAD Jagged Diagonal
LIL Linked List

note: CSR = CRS, CCS = CSC, SSK = SKS in some references

Matlab :: CSC
John R. Gilbert, Cleve, Moler and Robert Schreiber, Sparse Matrices in
MATLAB: Design and Implementation, SIAM Journal on Matrix Analysis and
Applications, volume 13, number 1, pages 333–356 (1992).

T. Gambill (UIUC) CS 357 March 15, 2011 13 / 59



DNS (Dense)

A =

1.0 2.0 3.0
4.0 5.0 6.0
7.0 8.0 9.0


AA =

[
3 3 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

]
simple
row-wise
easy blocked formats

T. Gambill (UIUC) CS 357 March 15, 2011 14 / 59



COO (Coordinate)

A =


1 0 0 2 0
3 4 0 5 0
6 0 7 8 9
0 0 10 11 0
0 0 0 0 12


AA = [ 12.0 9.0 7.0 5.0 1.0 2.0 11.0 3.0 6.0 4.0 8.0 10.0 ]
JR = [ 5 3 3 2 1 1 4 2 3 2 3 4 ]
JC = [ 5 5 3 4 1 4 4 1 1 2 4 3 ]

simple, often used for entry

Question: Do you need this much storage?

T. Gambill (UIUC) CS 357 March 15, 2011 15 / 59



CSR (Compressed Sparse Row)

A =


1 0 0 2 0
3 4 0 5 0
6 0 7 8 9
0 0 10 11 0
0 0 0 0 12


AA = [ 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 ]
JA = [ 1 4 1 2 4 1 3 4 5 3 4 5 ]
IA = [ 1 3 6 10 12 13 ]

Length of AA and JA is nnz; length of IA is n + 1
IA(j) gives the index (offset) to the beginning of row j in AA and JA (one
origin due to Fortran)
no structure, fast row access, slow column access (why?)
related: CSC, MSR

T. Gambill (UIUC) CS 357 March 15, 2011 16 / 59



MSR (Modified CSR)

A =


1 0 0 2 0
3 4 0 5 0
6 0 7 8 9
0 0 10 11 0
0 0 0 0 12


AA = [1.0 4.0 7.0 11.0 12.0 ∗ 2.0 3.0 5.0 6.0 8.0 9.0 10.0]
JA = [7 8 10 13 14 14 4 1 4 1 4 5 3]

places importance on diagonal (often nonzero and accessed frequently)
first n entries are the diag
n + 1 is empty
rest of AA are the nondiagonal entries
first n + 1 entries in JA give the index (offset) of the beginning of the row
(the IA of CSR is in this JA)
rest of JA are the columns indices

T. Gambill (UIUC) CS 357 March 15, 2011 17 / 59



DIA (Diagonal)
or CDS

A =


1 0 2 0 0
3 4 0 5 0
0 6 7 0 8
0 0 9 10 0
0 0 0 11 12

 DIAG =


∗ 1.0 2.0

3.0 4.0 5.0
6.0 7.0 8.0
9.0 10.0 ∗
11.0 12.0 ∗

 IOFF =
[
−1 0 2

]

need to know the offset structure
some entries will always be empty

T. Gambill (UIUC) CS 357 March 15, 2011 18 / 59



ELL (Ellpack-Itpack)

A =


1 0 2 0 0
3 4 0 5 0
0 6 7 0 8
0 0 9 10 0
0 0 0 11 12

 COEF =


1.0 2.0 0.0
3.0 4.0 5.0
6.0 7.0 8.0
9.0 10.0 0.0

11.0 12.0 0.0

 JCOEF =


1 3 1
1 2 4
2 3 5
3 4 4
4 5 5


Form columns from first non-zero in each row, repeat.
used more on vector machines (what? why?)
assumes low number of nnz per row (=number of columns in COEFF and
JCOEFF)

T. Gambill (UIUC) CS 357 March 15, 2011 19 / 59



Blocked

A =


1.0 2.0 0.0 0.0 3.0 4.0
5.0 6.0 0.0 0.0 7.0 8.0
0.0 0.0 9.0 10.0 11.0 12.0
0.0 0.0 13.0 14.0 15.0 16.0
17.0 18.0 0.0 0.0 20.0 21.0
22.0 23.0 0.0 0.0 24.0 25.0



AA =


1.0 3.0 9.0 11.0 17.0 20.0
5.0 7.0 13.0 15.0 22.0 24.0
2.0 4.0 10.0 12.0 18.0 21.0
6.0 8.0 14.0 16.0 23.0 25.0


JA =

[
1 5 3 5 1 5

]
IA =

[
1 3 5 7

]

T. Gambill (UIUC) CS 357 March 15, 2011 20 / 59



Blocked

each column of AA is a 2× 2 block
JA(k) = column index of (1, 1) entries of the kth block
declared as AA(2, 2, 6)
blocks arise in many apps
variant: variable block size

T. Gambill (UIUC) CS 357 March 15, 2011 21 / 59



Blocked
Also row-wise

AA =


1.0 5.0 2.0 6.0
3.0 7.0 4.0 8.0
9.0 15.0 10.0 14.0

11.0 13.0 12.0 16.0
17.0 22.0 18.0 23.0
20.0 24.0 21.0 25.0


JA =

[
1 5 3 5 1 5

]
IA =

[
1 3 5 7

]
each row of AA is a 2× 2 block (can be a drawback)
JA, IA same, AA(6, 2, 2)
if elements of blocks are accessed at the same time: rows are better (C)
if elements of similar positions in different blocks are accessed at the
same time: columns are better (C)

T. Gambill (UIUC) CS 357 March 15, 2011 22 / 59



try it...

A =


7 0 0 0 0 0
0 1 2 0 0 0
0 2 0 2 0 0
0 0 0 0 5 0
0 0 0 0 6 4


CSR
CSC
COO

T. Gambill (UIUC) CS 357 March 15, 2011 23 / 59



Example

A =


7 0 0 0 0 0
0 1 2 0 0 0
0 2 0 2 0 0
0 0 0 0 5 0
0 0 0 0 6 4



i IA JA AA
1 2 2 1
2 3 4 2
3 4 5 5
4 2 3 2
5 5 6 4
6 1 1 7
7 5 5 6
8 3 2 2

COO

i IA JA AA
1 1 1 7
2 2 2 1
3 4 3 2
4 6 2 2
5 7 4 2
6 9 5 5
7 - 5 6
8 - 6 4

CSR

T. Gambill (UIUC) CS 357 March 15, 2011 24 / 59



Sparse Matrix-Vector Multiply

z = Ax, Am×n, xn×1, zm×1

1 input A, x
2

3 for i = 1 to m
4 z(i) = A(i, :) ∗ x
5 end

CSR: rows are contiguous...(next slide)

T. Gambill (UIUC) CS 357 March 15, 2011 25 / 59



Sparse Matrix-Vector Multiply
CSR

z = Ax, Am×n,AA1×nnz(A), xn×1, zm×1

1 for i=1:m

2 Z(i)=0

3 K1 = IA(i)

4 K2 = IA(i+1)-1

5 for j=K1:K2

6 z(i) = z(i) + AA(j)*x(JA(j))

7 end

8 end

O(nnz)arithmetic operations
marches down the rows
very cheap

T. Gambill (UIUC) CS 357 March 15, 2011 26 / 59



Some Python

A =


7 0 0 0 0 0
0 1 2 0 0 0
0 2 0 2 0 0
0 0 0 0 5 0
0 0 0 0 6 4



i IA JA AA
1 2 2 1
2 3 4 2
3 4 5 5
4 2 3 2
5 5 6 4
6 1 1 7
7 5 5 6
8 3 2 2

COO

1 >>> import scipy

2 >>> import numpy as np

3 >> I = np.array([1.,2.,3.,1.,4.,0.,4.,2.])

4 >>> J = np.array([1.,3.,4.,2.,5.,0.,4.,1.])

5 >>> V =scipy.sparse.coo_matrix((A,(I,J)),shape=(5,6))

6 >>> V

7 <5x6 sparse matrix of type ’<type numpy.float64>’

8 with 8 stored elements in COOrdinate format>

9 >>> V.todense()

10 matrix([[ 7., 0., 0., 0., 0., 0.],

11 [ 0., 1., 2., 0., 0., 0.],

12 [ 0., 2., 0., 2., 0., 0.],

13 [ 0., 0., 0., 0., 5., 0.],

14 [ 0., 0., 0., 0., 6., 4.]])

T. Gambill (UIUC) CS 357 March 15, 2011 27 / 59



Some Python

From COO to CSC:

1 >>> V =scipy.sparse.coo_matrix((A,(I,J)),shape=(5,6)).tocsr()

2 >>> V

3 <5x6 sparse matrix of type ’<type numpy.float64>’

4 with 8 stored elements in Compressed Sparse Row format>

To view:

1 >>> V =scipy.sparse.coo_matrix((A,(I,J)),shape=(5,6)).tocsr()

2 >>> matplotlib.pylab.spy(V)

3 <matplotlib.lines.Line2D object at 0x1eba2d0 >

4 >>> matplotlib.pylab.show()

T. Gambill (UIUC) CS 357 March 15, 2011 28 / 59



Simple Matrix Iterations

Solve
Ax = b

Assumption: A is very sparse
Let A = N + M, then

Ax = b
(N + M)x = b

Nx = b − Mx

Make this into an iteration:

Nxk = b − Mxk−1

xk = N−1(b − Mxk−1)

Careful choice of N and M can give effective methods
More powerful iterative methods exist

T. Gambill (UIUC) CS 357 March 15, 2011 29 / 59



Summary: Complexity of Linear Solves

Ax = b
diagonal system: O(n)
upper or lower triangular system: O(n2)

full system with GE: O(n3)

partial pivoting adds O(n2)

full system with LU: O(n3)

LU back solve: O(n2)

m different right-hand sides: O(mn3) for GE or O(n3 + mn2) for LU
tridiagonal system: O(n)
m-band system: O(m2n)

T. Gambill (UIUC) CS 357 March 15, 2011 30 / 59



Summary: Complexity

T. Gambill (UIUC) CS 357 March 15, 2011 31 / 59



Approximate solutions

So far, we are seeking “exact” solutions x∗ to

Ax = b

What if we only need an approximations x̂ to x∗?

We would like some x̂ so that ‖x̂ − x∗‖ 6 ε, where ε is some tolerance.

T. Gambill (UIUC) CS 357 March 15, 2011 32 / 59



The Residual

We can’t actually evaluate
e = x∗ − x̂

We call r = b − Ax̂ the residual. It is way to measure the error. In fact

r = b − Ax̂
= Ax∗ − Ax̂
= Ae

Residual versus Error
r = Ae

T. Gambill (UIUC) CS 357 March 15, 2011 33 / 59



How big is the residual?

For a given approximation, x̂ to x, how “big” is the residual r = b − Ax̂?
‖r‖ gives a magnitude
‖r‖1 =

∑n
j=1 |ri|

‖r‖2 =
(∑n

j=1 r2
i

)1/2

‖r‖∞ = max16j6n |ri|

T. Gambill (UIUC) CS 357 March 15, 2011 34 / 59



Approximating x...
Suppose we made a wild guess to the solution x of Ax = b:

x(0) ≈ x

How do I improve x(0)?

Ideally:
x(1) = x(0) + e(0)

but to obtain e(0), we must know x. Not a viable method.

Ideally (another way):

x(1) = x(0) + e(0)

= x(0) + (x∗ − x(0))

= x(0) + (A−1b − x(0))

= x(0) + A−1(b − Ax(0))

= x(0) + A−1r(0)

T. Gambill (UIUC) CS 357 March 15, 2011 35 / 59



An iteration

Again, the method
x(1) = x(0) + A−1r(0)

is nonsense since if we knew A−1 then we could compute the solution A−1b.

What if we approximate A−1? Suppose Q−1 ≈ A−1 and is cheap to construct,
then

x(1) = x(0) + Q−1r(0)

is a good step.

continuing...
x(k) = x(k−1) + Q−1r(k−1)

T. Gambill (UIUC) CS 357 March 15, 2011 36 / 59



An iteration, we’ve seen before...

The iterative formula we derived on the previous slide,

x(k) = x(k−1) + Q−1r(k−1)

is actually just the iteration we mentioned earlier,

x(k) = N−1(b − Mx(k−1))

where Q = N and A = M + N. To see this note that,

x(k) = x(k−1) + Q−1r(k−1) (1)
= x(k−1) + N−1(b − Ax(k−1)) (2)
= x(k−1) + N−1(b − (M + N)x(k−1)) (3)
= x(k−1) + N−1b − N−1Mx(k−1) − x(k−1) (4)
= N−1(b − Mx(k−1)) (5)

(6)

T. Gambill (UIUC) CS 357 March 15, 2011 37 / 59



Two views of the solution

One form of the solution for x(k) is (remember Newton’s method in higher
dimensions?):

x(k) = x(k−1) + Q−1(b − Ax(k−1))

and a second form is:

Qx(k) = Qx(k−1) + (b − Ax(k−1))

= (Q − A)x(k−1) + b

In either form we do not compute Q−1 rather, where we solve the linear
system.

T. Gambill (UIUC) CS 357 March 15, 2011 38 / 59



Two Popular Choices

Example
Jacobi iteration approximates A with Q = D = diag(A) where D has no zero
values.

1 x = x(0)

2

3 Q = D

4

5 for k = 1 to kmax

6 r = b − Ax
7 if ‖r = b − Ax‖ 6 tol, stop
8

9 x = x + Q−1r
10 end

T. Gambill (UIUC) CS 357 March 15, 2011 39 / 59



Two Popular Choices

Example
Gauss-Seidel iteration approximates A = D + L + U where L and U have zero
as diagonal values. Choose Q = D + L.

1 x = x(0)

2

3 Q = D + L

4

5 for k = 1 to kmax

6 r = b − Ax
7 if ‖r = b − Ax‖ 6 tol, stop
8

9 x = x + Q−1r
10 end

T. Gambill (UIUC) CS 357 March 15, 2011 40 / 59



Why D and D + L?

Look again at the iteration

x(k) = x(k−1) + Q−1r(k−1)

Looking at the error:

x − x(k) = x − x(k−1) − Q−1r(k−1)

Gives
e(k) = e(k−1) − Q−1Ae(k−1)

or
e(k) = (I − Q−1A)e(k−1)

or
e(k) = (I − Q−1A)ke(0)

T. Gambill (UIUC) CS 357 March 15, 2011 41 / 59



Why D and D + L?

We want
e(k) = (I − Q−1A)ke(0)

to converge.

When does ak = ck converge? .....when |c| < 1

Likewise, our iteration converges

‖e(k)‖ = ‖(I − Q−1A)ke(0)‖
6 ‖I − Q−1A‖k‖e(0)‖

when ‖I − Q−1A‖ < 1.

T. Gambill (UIUC) CS 357 March 15, 2011 42 / 59



Matrix Norms

What is ‖I − Q−1A‖ ?
‖A‖1 = max16j6n

∑n
i=1 |aij|

‖A‖2 = σmax = σ1(the largest singular value of A)
‖A‖∞ = max16i6n

∑n
j=1 |aij|

T. Gambill (UIUC) CS 357 March 15, 2011 43 / 59



Again, why do Jacobi and Gauss-Seidel work?

Jacobi, Gauss-Seidel (sufficient) Convergence Theorem
If A is diagonally dominant by rows, then the Jacobi and Gauss-Seidel
methods converge for any initial guess x(0).

Definition: Diagonal Dominance
A matrix is diagonally dominant by rows if

|aii| >

n∑
j=1,j,i

|aij|

for all i.

T. Gambill (UIUC) CS 357 March 15, 2011 44 / 59



Smart Jacobi Algorithm

The algorithm above uses the matrix representation:

x(k) = −D−1(L + U)x(k−1) + D−1b

The diagonal is decoupled from the L+U, so we have an update in the form of

x(k)
i = −

n∑
j=1,j,i

(
aij

aii

)
x(k−1)

j +
bi

aii

So each sweep (from k − 1 to k) uses O(n) operations per vector element.
If, for each row i, aij = 0 for all but m values of j, each sweep uses O(mn)
operations.

T. Gambill (UIUC) CS 357 March 15, 2011 45 / 59



Smart Gauss-Seidel Algorithm
The algorithm above uses the matrix representation:

x(k) = −(D + L)−1Ux(k−1) + (D + L)−1b

Component-wise:

x(k)
i = −

n∑
j=1,j<i

(
aij

aii

)
x(k)

j −

n∑
j=1,j>i

(
aij

aii

)
x(k−1)

j +
bi

aii

So again each sweep (from k − 1 to k) uses O(n) operations per vector
element.
If, for each row i, aij = 0 for all but m values of j, each sweep uses O(mn)
operations.

In our iterative methods we would expect that x(k) to be closer to the solution
than x(k−1). Note that the Gauss-Seidel method includes the previous values
of x(k)

j in computing x(k)
i where i > j whereas the Jacobi method does not. So

we would expect the Gauss-Seidel method to converge faster than the Jacobi
method.

T. Gambill (UIUC) CS 357 March 15, 2011 46 / 59



Conjugate Gradients

Suppose that A is n× n symmetric and positive definite.
Since A is positive definite, xTAx > 0 for all x(, 0) ∈ Rn. (Why?)
Define a quadratic function

φ(x) =
1
2

xTAx − xTb

It turns out that −∇φ = b − Ax = r, or φ(x) has a minimum for x such that
Ax = b.
Optimization methods look in a “search direction” and pick the best step:

xk+1 = xk + αsk

Choose α so that φ(xk + αsk) is minimized in the direction of sk.
Find α so that φ is minimized:

0 =
d

dα
φ(xk+1) = ∇φ(xk+1)

T d
dα

xk+1 = −rT
k+1

d
dα

(xk + αsk) = −rT
k+1sk.

T. Gambill (UIUC) CS 357 March 15, 2011 47 / 59



Conjugate Gradients

Find α so that φ is minimized:

0 =
d

dα
φ(xk+1) = ∇φ(xk+1)

T d
dα

xk+1 = −rT
k+1

d
dα

(xk + αsk) = −rT
k+1sk.

We also know

rk+1 = b − Axk+1 = b − A(xk + αsk) = rk − αAsk

So, the optimal search parameter is

α =
rT

k sk

sT
k Ask

This is CG: take a step in a search direction

T. Gambill (UIUC) CS 357 March 15, 2011 48 / 59



Conjugate Gradients

Neat trick: We can compute the rk+1 without explicitly forming b − Axk+1.
Note from the previous slide:

rk+1 = b − Axk+1 = b − A(xk + αsk) = b − Axk − αAsk = rk − αAsk

and computing α (on the previous slide) already involves computing Ask.

T. Gambill (UIUC) CS 357 March 15, 2011 49 / 59



Conjugate Gradients

How should we pick sk?
Note that −∇φ = b − Ax = r, so r is the negative gradient of φ (for any x),
and this is a good direction.
Thus, pick s0 = r = b − Ax0.
What is s1? This should be in the direction of r1, but conjugate to s0:
sT

1 As0 = 0.
(Two vectors u and v are A-conjugate if uTAv = 0)
So, if we let s1 = r1 + β1s0, we can require

0 = sT
1 As0 = (rT

1 + β1sT
0 )As0 = rT

1 As0 + β1sT
0 As0

or
β1 = −rT

1 As0/sT
0 As0.

Holds for sk+1 in terms of rk+1 + βksk

Further simplification (which is not simple to carry out) yields a simple
method that requires only one matrix-vector product per step:

T. Gambill (UIUC) CS 357 March 15, 2011 50 / 59



Conjugate Gradients

1 x0 = initial guess r0 = b − Ax0 s0 = r0

2 for k = 0, 1, 2, . . .

3 αk =
rT
k rk

sT
k Ask

4 xk+1 = xk + αksk

5 rk+1 = rk − αkAsk

6 βk+1 = rT
k+1rk+1/rT

k rk

7 sk+1 = rk+1 + βk+1sk

8 end

T. Gambill (UIUC) CS 357 March 15, 2011 51 / 59



Goal

Find x = Ax and the elements of x are Google’s PageRank.
For a matrix A, the scalar-vector pairs (λ, v) such that Av = λv are
eigenvalue-eigenvectors.
Power Method

T. Gambill (UIUC) CS 357 March 15, 2011 52 / 59



Power Method

Suppose that A is n× n and that A is similar to a diagonal matrix D, that is,

D = S−1AS

and further that the eigenvalues of A are ordered:

|λ1| > |λ2| > |λ3| > · · · > |λn|

The column vectors of S form a linearly independent set of of vectors Sei
where ei is a standard unit vector in R such that ASei = diSei. That is, λi = di
and the columns si of S are the eigenvectors of A.

Goal
Computing the value of the largest (in magnitude) eigenvalue, λ1.

T. Gambill (UIUC) CS 357 March 15, 2011 53 / 59



Power Method
Take a guess x(0) at the associated eigenvector, Ax = λ1x. We know

x(0) = c1s1 + · · ·+ cnsn

Since cjsj is an eigenvector of A with eigenvalue λj (why?) rename the
eigenvectors vj = cjsj.

x(0) = v1 + · · ·+ vn

Then compute

x(1) = Ax(0)

x(2) = Ax(1)

x(3) = Ax(2)

...

x(k+1) = Ax(k)

T. Gambill (UIUC) CS 357 March 15, 2011 54 / 59



Power Method

Or x(k) = Akx(0). Or

x(k) = Akx(0)

= Akv1 + · · ·+ Akvn

= λk
1v1 + . . . λk

nvn

And this can be written as

x(k) = λk
1

(
v1 +

(
λ2

λ1

)k

v2 + · · ·+
(
λn

λ1

)k

vn

)

So as k→∞, we are left with

x(k) → λkv1

T. Gambill (UIUC) CS 357 March 15, 2011 55 / 59



The Power Method (with normalization)

1 for k = 1 to kmax
2 y = Ax
3 r = φ(y)/φ(x)
4 x = y/‖y‖∞

often φ(x) = x1 is sufficient
r is an estimate of the eigenvalue; x the eigenvector

Challenge: Why can’t we use r = ‖y‖/‖x‖?

T. Gambill (UIUC) CS 357 March 15, 2011 56 / 59



Inverse Power Method

We now want to find the smallest eigenvalue
Av = λv ⇒ A−1v = 1

λ
v

So “apply” power method to A−1 (assuming a distinct smallest
eigenvalue)
x(k+1) = A−1x(k)

Easier with A = LU
Update RHS and backsolve with U:

Ux(k+1) = L−1x(k)

T. Gambill (UIUC) CS 357 March 15, 2011 57 / 59



T. Gambill (UIUC) CS 357 March 15, 2011 58 / 59



Instructor Notes

The quadratic function q(x) = xTAx is called a quadratic form. If A is not
symmetric then it can be converted to a new matrix B where
q(x) = xTAx = xTBx and B is symmetric. Define

bij =

{
aij, when i = j

aij+aji

2 , when i , j

T. Gambill (UIUC) CS 357 March 15, 2011 59 / 59


