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Example 1: Finding a curve that best fits the data

Suppose we are given the data {(t1, y1), ..., (t21, y21)} (circles) and we want to
find a parabolic curve that best fits the data.

T. Gambill (UIUC) CS 357 March 15, 2011 2 / 22



Example 1: Finding a curve that best fits the data

We are looking for a curve of the form,

f (t, x) = x1 + x2t + x3t2

so that

A ∗ x =


1 t1 t2

1
1 t2 t2

2
...

...
...

1 t21 t2
21

 ∗
x1

x2
x3

 ≈


y1
y2
...

y21

 = b

The matrix A has the form of a Vandermonde matrix.
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Example 2: Reducing Measurement Error

Suppose a surveyor determined the heights of three hills above some
reference point as x1 = 1237ft., x2 = 1941ft. and x3 = 2417ft. and to confirm
these measurements the surveyor climbs to the top of the first hill and
measures the height of the second hill above the first to be, x2 = x1 + 711 and
the third above the first to be x3 = x1 + 1177. Similarly, the surveyor climbs the
second hill and measures the height of the third above the second to be
x3 = x2 + 475. (M. Heath) These equations can be written in matrix form as,

A ∗ x =


1 0 0
0 1 0
0 0 1
−1 1 0
−1 0 1
0 −1 1

 ∗
x1

x2
x3

 ≈


1237
1941
2417
711

1177
475

 = b

Systems with more equations than unknowns are called overdetermined
The system above, Ax = b is an over-determined linear system. What values
should the surveyor give for the heights of the hills?
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Overdetermined Systems

If A is an m× n matrix, then in general, an m× 1 vector b may not lie in the
column space of A. Hence Ax = b may not have an exact solution.

Definition
The residual vector is

r = b − Ax.

The least squares solution is given by minimizing the square of the residual
in the 2-norm.
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Normal equations

Writing r = (b − Ax) and substituting, we want to find an x that minimizes the
following function

φ(x) = ||r||22 = rTr = (b − Ax)T(b − Ax) = bTb − 2xTATb + xTATAx

From calculus we know that the minimizer occurs where ∇φ(x) = 0.

The derivative is given by

∇φ(x) = −2ATb + 2ATAx = 0

Definition
The system of normal equations is given by

ATAx = ATb.

The normal equations has a unique solution if rank(A) = n.
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Normal equations, a Geometric View

If the vector b is not in the span (the set of all linear combinations of vectors)
of the columns of A then in order to find the minimum distance from b to the
span of the columns of A we need to find x∗ such that r = (b − Ax∗) is
orthogonal to Ax for any x.

< r, Ax >=< b − Ax∗, Ax >= 0
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Normal equations, a Geometric View

< r, Ax >=< b − Ax∗, Ax >= 0

or
< AT(b − Ax∗), x >= 0

so that with x = ei the column vectors of the identity matrix we have,

(AT(b − Ax∗))Tei = 0 for i = 1, ...n

and thus
ATb = ATAx∗
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Solving normal equations

Since the normal equations forms a symmetric positive definite system
(assuming rank(A) = n), we can solve by computing the Cholesky
factorization

ATA = LLT

and solving Ly = ATb and LTx = y.

Consider

A =

1 1
ε 0
0 ε


where 0 < ε <

√
εmach. The normal equations for this system is given by

ATA =

[
1 + ε2 1

1 1 + ε2

]
=

[
1 1
1 1

]
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Normal equations: conditioning

The normal equations tend to worsen the condition of the matrix.
Since we defined the condition number for a square matrix only we will have
to extend this definition for Am×n.

Definition
Let Am×n have rank(A) = n. Then we define the pseudo-inverse A+ of A as
A+ = (ATA)−1AT

and we define the condition number of A as,
cond(A) = ||A||2||A+||2

Theorem

cond(ATA) = (cond(A))2
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Normal equations: Python conditioning example

1

2 >>> A = scipy.rand(10,10)

3 >>> np.linalg.cond(A)

4 162.83042743389382

5 >>> np.linalg.cond(np.dot(A.T,A))

6 26513.748098298413

How can we solve the least squares problem without squaring the condition of
the matrix?
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Other approaches

QR factorization.
I For A ∈ Rm×n, factor A = QR where

F Q is an m×m orthogonal matrix
F R is an m× n upper triangular matrix (since R is an m× n upper triangular

matrix we can write R =

[
R ′
0

]
where R ′ is n× n upper triangular and 0 is the

(m − n)× n matrix of zeros)

SVD - singular value decomposition
I For A ∈ Rm×n, factor A = USVT where

F U is an m×m orthogonal matrix
F V is an n× n orthogonal matrix
F S is an m× n diagonal matrix whose elements are the singular values.
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Orthogonal matrices

Definition
A matrix Q is orthogonal if

QTQ = QQT = I

Orthogonal matrices preserve the Euclidean norm of any vector v,

||Qv||22 = (Qv)T(Qv) = vTQTQv = vTv = ||v||22.
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Using QR factorization for least squares

Now that we know orthogonal matrices preserve the euclidean norm, we can
apply orthogonal matrices to the residual vector without changing the norm of
the residual. Note that A is m x n, Q is m x m, R ′ is n x n, x is n x 1 and b is
m x 1.

‖r‖2
2 = ‖b−Ax‖2

2 =

∥∥∥∥b − Q
[

R ′

0

]
x
∥∥∥∥2

2
=

∥∥∥∥QTb − QTQ
[

R ′

0

]
x
∥∥∥∥2

2
=

∥∥∥∥QTb −
[

R ′

0

]
x
∥∥∥∥2

2

If QTb =

[
c1
c2

]
where c1 is an n x 1 vector then

∥∥∥∥QTb −
[

R ′

0

]
x
∥∥∥∥2

2
=

∥∥∥∥[c1
c2

]
−

[
R ′x

0

]∥∥∥∥2

2
=

∥∥∥∥[c1 − R ′x
c2

]∥∥∥∥2

2
= ||c1 − R ′x||22 + ||c2||

2
2

Hence the least squares solution is given by solving R ′x = c1. We can solve
R ′x = c1 using back substitution and the residual is ||r||2 = ||c2||2.
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Gram-Schmidt orthogonalization

One way to obtain the QR factorization of a matrix Am×n (rank(A) = n) is by
Gram-Schmidt orthogonalization.

For each column of A, subtract out its component in the other columns.

For the simple case of 2 vectors {a1, a2}, first normalize a1 and obtain

q1 =
a1

||a1||
.

Now subtract from a2 the components from q1. This is given by

a ′2 = a2− < q1, a2 > q1 = a2 − (qT
1 a2)q1.

Normalizing a ′2 we have

q2 =
a ′2
||a ′2||

Repeating this idea for n columns gives us Gram-Schmidt orthogonalization.
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Gram-Schmidt orthogonalization
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Gram-Schmidt orthogonalization

Since R is upper triangular and A = QR where Q = [q1|q2| . . . |qm] we have

a1 = q1r11

a2 = q1r12 + q2r22

... =
...

aj = q1r1j + q2r2j + ... + qjrjj

... =
...

an = q1r1n + q2r2n + ... + qnrnn

From this we see that rij = qT
i aj, j >= i
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Gram-Schmidt orthogonalization

1 function [Q,R] = gs_qr (A)

2

3 m = size(A,1);

4 n = size(A,2);

5

6 for i = 1:n

7 R(i,i) = norm(A(:,i),2);

8 Q(:,i) = A(:,i)./R(i,i);

9 for j = i+1:n

10 R(i,j) = Q(:,i)’ * A(:,j);

11 A(:,j) = A(:,j) - R(i,j)*Q(:,i);

12 end

13 end

14

15 end
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Using SVD for least squares

Recall that a singular value decomposition is given by

A =


...

...
...

u1 . . . um
...

...
...




σ1
. . .

σr
. . .

0


. . . vT

1 . . .

. . .
... . . .

. . . vT
n . . .



where σi are the singular values.
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Using SVD for least squares

Assume that A has rank k (and hence k nonzero singular values σi) and recall
that we want to minimize

||r||22 = ||b − Ax||22.

Substituting the SVD for A we find that

||r||22 = ||b − Ax||22 = ||b − USVTx||22

where U and V are orthogonal and S is diagonal with k nonzero singular
values.

||b − USVTx||22 = ||UTb − UTUSVTx||22 = ||UTb − SVTx||22
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Using SVD for least squares

Let c = UTb and y = VTx (and hence x = Vy) in ||UTb − SVTx||22. We now have

||r||22 = ||c − Sy||22

Since S has only k nonzero diagonal elements, we have

||r||22 =

k∑
i=1

(ci − σiyi)
2 +

m∑
i=k+1

c2
i

which is minimized when yi =
ci
σi

for 1 6 i 6 k.
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Using SVD for least squares

Theorem
Let A be an m× n matrix of rank r and let A = USVT, the singular value
decomposition. The least squares solution of the system Ax = b is

x =

r∑
i=1

(σ−1
i ci)vi

where ci = uT
i b.
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