# Lecture 8 

# Banded, LU, Cholesky, SVD 

T. Gambill

Department of Computer Science University of Illinois at Urbana-Champaign

February 16, 2010

## More Algorithms for Special Systems

- tridiagonal systems
- banded systems
- LU decomposition
- Cholesky factorization


## Tridiagonal

A tridiagonal matrix $A$

$$
\left[\begin{array}{cccccccc}
d_{1} & c_{1} & & & & & & \\
a_{1} & d_{2} & c_{2} & & & & & \\
& a_{2} & d_{3} & c_{3} & & & & \\
& & \cdots & \cdots & \cdots & & & \\
& & & a_{i-1} & d_{i} & c_{i} & & \\
& & & & \cdots & \cdots & \cdots & \\
& & & & \cdots & \cdots & \cdots & \\
& & & & & & a_{n-1} & d_{n}
\end{array}\right]
$$

- storage is saved by not saving zeros
- only $n+2(n-1)=3 n-2$ places are needed to store the matrix versus $n^{2}$ for the whole system
- can operations be saved? yes!


## Tridiagonal

$$
\left[\begin{array}{cccccccc}
d_{1} & c_{1} & & & & & & \\
a_{1} & d_{2} & c_{2} & & & & & \\
& a_{2} & d_{3} & c_{3} & & & & \\
& & \cdots & \cdots & \cdots & & & \\
& & & a_{i-1} & d_{i} & c_{i} & & \\
& & & & \cdots & \cdots & \cdots & \\
& & & & \cdots & \cdots & \cdots & \\
& & & & & & a_{n-1} & d_{n}
\end{array}\right]
$$

Start forward elimination (without any special pivoting)
(1) subtract $a_{1} / d_{1}$ times row 1 from row 2
(2) this eliminates $a_{1}$, changes $d_{2}$ and does not touch $c_{2}$
(3) continuing:

$$
\tilde{d}_{i}=d_{i}-\left(\frac{a_{i-1}}{\tilde{d}_{i-1}} c_{i-1}\right) \quad \tilde{b}_{i}=b_{i}-\left(\frac{a_{i-1}}{\tilde{d}_{i-1}} \tilde{b}_{i-1}\right)
$$

for $i=2 \ldots n$

## Tridiagonal

$$
\left[\begin{array}{cccccccc}
\tilde{d}_{1} & c_{1} & & & & & & \\
& \tilde{d}_{2} & c_{2} & & & & & \\
& & \tilde{d}_{3} & c_{3} & & & & \\
& & & \cdots & \cdots & & & \\
& & & & \tilde{d}_{i} & c_{i} & & \\
& & & & & \cdots & \cdots & \\
& & & & & & \cdots & \cdots \\
& & & & & & & \tilde{d}_{n}
\end{array}\right]
$$

This leaves an upper triangular (2-band). With back substitution:
(1) $x_{n}=\tilde{b}_{n} / \tilde{d}_{n}$
(2) $x_{n-1}=\left(1 / \tilde{d}_{n-1}\right)\left(\tilde{b}_{n-1}-c_{n-1} x_{n}\right)$
(3) $x_{i}=\left(1 / \tilde{d}_{i}\right)\left(\tilde{b}_{i}-c_{i} x_{i+1}\right)$

## Tridiagonal Algorithm

```
input: n,a,d,c,b
for i=2 to n
    xmult = ai-1}/\mp@subsup{d}{i-1}{
    d
    b}=\mp@subsup{b}{i}{}-x\mathrm{ xmult }\cdot\mp@subsup{b}{i-1}{
end
x
for i=n-1 down to 1
    xi=(\mp@subsup{b}{i}{}-\mp@subsup{c}{i}{}\mp@subsup{x}{i+1}{})/\mp@subsup{d}{i}{}
end
```


## $m$-band


$m=5$

$m=11$

$m=11$

- the $m$ correspond to the total width of the non-zeros
- after a few passes of GE fill-in with occur within the band
- so an empty band costs (about) the same as a non-empty band
- one fix: reordering (e.g. Cuthill-McKee)
- generally GE will cost $\mathcal{O}\left(\left(\frac{m-1}{2}\right)^{2} n\right)$ for $m$-band systems


## Motivation: Symmetric Matrix

- $A$ is symmetric, if $A=A^{T}$
- If $A=L U$ and $A$ is symmetric, then could $L=U^{T}$ ?
- If so, this could save $50 \%$ of the computation of $L U$ by only calculating $L$
- Save $50 \%$ of the FLOPS!
- This is achievable: $L D L^{T}$ and Cholesky $\left(L L^{T}\right)$ factorization


## Factorization Methods

Factorizations are the common approach to solving $A x=b$ : simply organized Gaussian elimination.

Goals for today:

- LU factorization
- Cholesky factorization
- Use of the backslash operator


## LU Factorization

Find $L$ and $U$ such that

$$
A=L U
$$

and $L$ is lower triangular, and $U$ is upper triangular.

$$
\begin{aligned}
L & =\left[\begin{array}{ccccc}
1 & 0 & \cdots & & 0 \\
\ell_{2,1} & 1 & 0 & & 0 \\
\ell_{3,1} & \ell_{3,2} & 1 & & 0 \\
\vdots & \vdots & & \ddots & \vdots \\
\ell_{n, 1} & \ell_{n, 2} & \cdots & \ell_{n-1, n} & 1
\end{array}\right] \\
U & =\left[\begin{array}{ccccc}
u_{1,1} & u_{1,2} & u_{1,3} & \cdots & u_{1, n} \\
0 & u_{2,2} & u_{2,3} & \cdots & u_{2, n} \\
0 & 0 & \ddots & \ddots & \vdots \\
\vdots & \vdots & & & u_{n-1, n} \\
0 & 0 & & & u_{n, n}
\end{array}\right]
\end{aligned}
$$

Since $L$ and $U$ are triangular, it is easy to apply their inverses.

## Why?

- Since $L$ and $U$ are triangular, it is easy, $\mathcal{O}\left(n^{2}\right)$, to apply their inverses
- Decompose once, solve $k$ right-hand sides quickly:
- $\mathcal{O}\left(k n^{3}\right)$ with GE
- $\mathcal{O}\left(n^{3}+k n^{2}\right)$ with $L U$
- Given $A=L U$ you can compute $A^{-1}, \operatorname{det}(A), \operatorname{rank}(A), \operatorname{ker}(A)$, etc...


## LU Factorization

Since $L$ and $U$ are triangular, it is easy to apply their inverses. Consider the solution to $A x=b$.

$$
A=L U \Longrightarrow(L U) x=b
$$

Regroup since matrix multiplication is associative

$$
L(U x)=b
$$

Let $U x=y$, then

$$
L y=b
$$

Since $L$ is triangular it is easy (without Gaussian elimination) to compute

$$
y=L^{-1} b
$$

This expression should be interpreted as "Solve $L y=b$ with forward substitution."

## LU Factorization

Now, since $y$ is known, solve for $x$

$$
x=U^{-1} y
$$

which is interpreted as "Solve $U x=y$ with backward substitution."

## LU Factorization

## Listing 1: LU Solve

```
Factor A into L and }
Solve Ly=b for }
Solve Ux=y for }
```

use forward substitution
use backward substitution

## LU Factorization

- If we have $A x=b$ and perform GE we end up with

$$
A=\left[\begin{array}{llll}
x & x & x & x \\
x & x & x & x \\
x & x & x & x \\
x & x & x & x
\end{array}\right] \Rightarrow\left[\begin{array}{cccc}
x^{\prime} & x^{\prime} & x^{\prime} & x^{\prime} \\
0 & x^{\prime} & x^{\prime} & x^{\prime} \\
0 & 0 & x^{\prime} & x^{\prime} \\
0 & 0 & 0 & x^{\prime}
\end{array}\right]
$$

- Remember from Lecture 6, that naive Gaussian Elimination can be done by matrix multiplication

$$
\begin{aligned}
M A x & =M b \\
U x & =M b
\end{aligned}
$$

- $M A$ is upper triangular and called $U$
- $M$ is the elimination matrix


## LU Factorization

As an example take one column step of GE, $A$ becomes

$$
\left[\begin{array}{cccc}
6 & -2 & 2 & 4 \\
12 & -8 & 6 & 10 \\
3 & -13 & 9 & 3 \\
-6 & 4 & 1 & -18
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
6 & -2 & 2 & 4 \\
0 & -4 & 2 & 2 \\
0 & -12 & 8 & 1 \\
0 & 2 & 3 & -14
\end{array}\right]
$$

using the elimination matrix

$$
M_{1}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-2 & 1 & 0 & 0 \\
-\frac{1}{2} & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right]
$$

So we have performed

$$
M_{1} A x=M_{1} b
$$

## LU Factorization

From Lecture 6

- Inverting $M_{i}$ is easy: just flip the sign of the lower triangular entries

$$
M_{1}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-2 & 1 & 0 & 0 \\
-\frac{1}{2} & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right] \Rightarrow M_{1}^{-1}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 \\
\frac{1}{2} & 0 & 1 & 0 \\
-1 & 0 & 0 & 1
\end{array}\right]
$$

- $M_{i}^{-1}$ is just the multipliers used in Gaussian Elimination!
- $M_{i}^{-1} M_{j}^{-1}$ is still lower triangular, for $i<j$, and is the union of the columns
- $M_{1}^{-1} M_{2}^{-1} \ldots M_{j}^{-1}$ is lower triangular, with the lower triangle the multipliers from Gaussian Elimination


## LU Factorization

- Zeroing each column yields another elimination matrix operation:

$$
M_{3} M_{2} M_{1} A x=M_{3} M_{2} M_{1} b
$$

- $M=M_{3} M_{2} M_{1}$. Thus
- $L=M_{1}^{-1} M_{2}^{-1} M_{3}^{-1}$ is lower triangular

$$
\begin{aligned}
M A & =U \\
M_{3} M_{2} M_{1} A & =U \\
A & =M_{1}^{-1} M_{2}^{-1} M_{3}^{-1} U \\
A & =L U
\end{aligned}
$$

## LU (forward elimination) Algorithm

Listing 2: LU

```
given A
for k=1...n-1
    for i=k+1\ldotsn
            xmult = aik /akk
            aik}=\mathrm{ xmult
            for j = k+1\ldotsn
                aij}=\mp@subsup{a}{ij}{}-(xmult) ak
            end
        end
end
```

- $U$ is stored in the upper triangular portion of $A$
- $L$ (without the diagonal) is stored in the lower triangular


## Doolittle Factorization (LU)

## Listing 3: Doolittle

```
given A
output L, U
for k=1\ldotsn
    \ellkk}=
    for j=k...n
        ukj = akj}-\mp@subsup{\sum}{i=1}{k-1}\mp@subsup{\ell}{ki}{}\mp@subsup{u}{ij}{
    end
    for j =k+1\ldotsn
        \elljk}=(\mp@subsup{a}{jk}{}-\mp@subsup{\sum}{i=1}{k-1}\mp@subsup{\ell}{ji}{}\mp@subsup{u}{ik}{})/\mp@subsup{u}{kk}{
    end
end
```

- Mathematically the same as previous $L U$
- Difference is we now explicitly form $L$ and $U$


## What About Pivoting?

- Pivoting (that is row exchanges) can be expressed in terms of matrix multiplication
- Do pivoting during elimination, but track row exchanges in order to express pivoting with matrix $P$
- Let $P$ be all zeros
- Place a 1 in column $j$ of row 1 to exchange row 1 and row $j$
- If no row exchanged needed, place a 1 in column 1 of row 1
- Repeat for all rows of $P$
- $P$ is a permutation matrix
- Now using pivoting,

$$
L U=P A
$$

## Python LU

Like GE, $L U$ needs pivoting. With pivoting the $L U$ factorization always exists, even if $A$ is singular. With pivoting, we get

$$
L U=P A
$$

```
>>> import numpy as np
>>> import scipy.linalg
>>> A = scipy.rand (4,4)
>>> b = scipy.rand (4,1)
>>> A
array([[ 0.50742833, 0.29832637, 0.87906078, 0.11219151],
    [0.58297164, 0.31504083, 0.33923234, 0.294866 ],
    [0.45099647, 0.34853809, 0.55473901, 0.52446345],
    [0.07995563, 0.31020355, 0.88319642, 0.9922531 ]])
>>> b
array([[ 0.04539488],
    [ 0.25711279],
    [ 0.55651992],
    [0.24906525]])
>>> LU = scipy.linalg.lu_factor(A)
>>> LU
>>> x = scipy.linalg.lu_solve(LU,b)
(array([[ 0.87906078, 0.57723918, 0.12762657, 0.33936945],
    [0.33923234, 0.38715344, 0.64979646, 0.51637339],
    [0.55473901, 0.13077937, 0.36868404, 0.25155858],
    [ 0.88319642, -0.42985995, 1.15885524, -0.05907806]]),
            array([2, 2, 3, 3], dtype=int32))
>>> x
array([[ -5.75628116],
    [ 15.83236907],
    [ -1.64503985],
    [ -2.77051444]])
```


## LU Tutorial Module

http://www.cse.illinois.edu/iem/linear_equations/gaussian_elimination/

## Use SYMMETRY! YRTEMMYS esU

- Suppose

$$
A=L U, \text { and } A=A^{T}
$$

- Then

$$
L U=A=A^{T}=(L U)^{T}=U^{T} L^{T}
$$

- Thus

$$
U=L^{-1} U^{T} L^{T}
$$

and

$$
U\left(L^{T}\right)^{-1}=L^{-1} U^{T}=D
$$

- We can conclude that

$$
U=D L^{T}
$$

and

$$
A=L U=L D L^{T}
$$

## Symmetric Doolittle Factorization $\left(L D L^{T}\right)$

## Listing 4: Symm Doolittle

$$
\begin{aligned}
& \text { given } A \\
& \text { output } L \text {, } D \\
& \text { for } k=1 \ldots n \\
& \begin{array}{l}
\ell_{k k}=1
\end{array} \\
& \qquad \begin{array}{l}
d_{k}=a_{k k}-\sum_{v=1}^{k-1} d_{v} \ell_{k v}^{2} \\
\text { for } j=k+1 \ldots n \\
\ell_{k j}=0
\end{array} \\
& \quad \begin{array}{l}
j k
\end{array}=\left(a_{j k}-\sum_{v=1}^{k-1} \ell_{j v} d_{v} \ell_{k v}\right) / d_{k} \\
& \text { end } \\
& \text { end }
\end{aligned}
$$

- Special form of the Doolittle factorization


## $L L^{T}$ : Cholesky Factorization

- A must be symmetric and positive definite (SPD)
- $A$ is Positive Definite (PD) if for all $x \neq 0$ the following holds

$$
x^{T} A x>0
$$

- Positive definite gives us an all positive $D$ in $A=L D L^{T}$
- Let $x=\left(L^{T}\right)^{-1} e_{i}$, where $e_{i}$ is the $i$-th column of $I$
- $L$ becomes $L D^{1 / 2}$ (NOT necessarily unit lower triangular as in $L U$ factorization!
- $A=L L^{T}$, i.e. $L=U^{T}$
- Half as many flops as $L U$ !
- Only calculate $L$ not $U$


## Cholesky $2 x 2$ example

$$
\left[\begin{array}{ll}
a_{11} & a_{21} \\
a_{21} & a_{22}
\end{array}\right]=\left[\begin{array}{cc}
l_{11} & 0 \\
l_{21} & l_{22}
\end{array}\right] *\left[\begin{array}{cc}
l_{11} & l_{21} \\
0 & l_{22}
\end{array}\right]
$$

implies that

$$
l_{11}=\sqrt{a_{11}}, \quad l_{21}=a_{21} / l_{11}, \quad l_{22}=\sqrt{a_{22}-l_{21}^{2}}
$$

## Cholesky Factorization

## Listing 5: Cholesky

```
given A
output L
for k=1...n
    \ell \ellkk =( akk
    for j=k+1\ldotsn
        \elljk
    end
end
```


## Why SPD?

In general, SPD gives us

- non singular
- If $x^{T} A x>0$, for all nonzero $x$
- Then $A x \neq 0$ for all nonzero $x$
- Hence, the columns of $A$ are linearly independent
- No pivoting
- From algorithm, can derive that

$$
\left|l_{k j}\right| \leqslant \sqrt{a_{k k}}
$$

- Elements of $L$ do not grow with respect to $A$
- For short proof see book
- Cholesky faster than $L U$
- No pivoting
- Only calculate $L$, not $U$


## Why SPD?

A matrix is Positive Definite (PD) if for all $x \neq 0$ the following holds

$$
x^{T} A x>0
$$

- For SPD matrices, use the Cholesky factorization, $A=L L^{T}$
- Cholesky Factorization
- Requires no pivoting
- Requires one half as many flops as $L U$ factorization, that is only calculate $L$ not $L$ and $U$.
- Cholesky will be more than twice as fast as $L U$ because no pivoting means no data movement
- Use Python linalg.cholesky(A) or MATLAB's built-in chol (A) function for routine work.
- If $A$ is positive definite then so is $A^{-1}$ and $A^{n}$ for $n=2,3,4, \ldots$.
- If $A$ and $B$ are positive definite then so is $A+B$.


## Motivation Revisited

Multiple right hand sides

- Solve $A x=b$ for $k$ different $b$ vectors
- Using LU factorization, the cost is $\mathcal{O}\left(n^{3}\right)+\mathcal{O}\left(k n^{2}\right)$
- Using Gaussian Elimination, the cost is $\mathcal{O}\left(k n^{3}\right)$

If $A$ is symmetric

- Save $50 \%$ of the flops with $L D L^{T}$ factorization
- Save $50 \%$ of the flops and many memory operations with Cholesky ( $L L^{T}$ ) factorization


## SVD: motivation

SVD uses in practice:
(1) Search Technology: find closely related documents or images in a database
(2) Clustering: aggregate documents or images into similar groups
(3) Compression: efficient image storage
(9) Principal axis: find the main axis of a solid (engineering/graphics)
(5) Summaries: Given a textual document, ascertain the most representative tags
(6) Graphs: partition graphs into subgraphs (graphics, analysis)

## A geometric view of $y=A x$

## Example

Given the matrix

$$
D=\left[\begin{array}{cc}
10 & 0 \\
0 & 0.5
\end{array}\right]
$$

then

$$
y=D x
$$

maps the unit circle onto an ellipse.


## A geometric view of $y=A x$

## Example

Given the matrix

$$
Q=\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]
$$

then

$$
y=Q x
$$

maps the unit circle onto the unit circle.



T

## A geometric view of $y=A x$

## Diagonal Matrices

The matrix $D$ in a previous example is called a diagonal matrix.

## Orthogonal Matrices

The matrix $Q$ in a previous example is called a orthogonal matrix since $Q Q^{T}=I$.

## Orthogonality, Orthonormality

## Definition

If $u$ and $v$ are $n \times 1$ vectors then $\langle u, v\rangle=u^{T} * v$ is called the standard inner product of $u$ with $v$. We have $\langle u, u\rangle=\|u\|_{2}^{2}$.

From calculus, we know that the angle $\theta$ between two vectors can be computed from the following,

Angle between vectors

$$
<u, v>=\|u\|_{2}\|v\|_{2} \cos (\theta)
$$

## Definition

Vectors $u$ and $v$ are said to be orthogonal (perpendicular) if $\langle u, v\rangle=0$.

## Definition

Vectors $u$ and $v$ are said to be orthonormal if $\langle u, v\rangle=0$ and $\|u\|_{2}=\|v\|_{2}=1$.

## Properties of $A^{T}$

## Theorem

If $A$ is an $n \times n$ real valued matrix then for any $n \times 1$ vectors $u$ and $v$,

$$
<A u, v>=<u, A^{T} v>
$$

This follows from the definition of the standard inner product, since

$$
<A u, v>=(A u)^{T} v=\left(u^{T} A^{T}\right) v=u^{T}\left(A^{T} v\right)=\left\langle u, A^{T} v>\right.
$$

## Properties of Orthogonal Matrices

## Definition

An $n \times n$ matrix $Q$ is called orthogonal if $Q Q^{T}=Q^{T} Q=I$.

- $Q^{-1}=Q^{T}$
- the columns of $Q$ are orthonormal
- the rows of $Q$ are orthonormal
- $\|Q x\|_{2}=\|x\|_{2}$ for all $x$


## Another example of an orthogonal matrix

## Example

Given the matrix

$$
Q=\left[\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right]
$$

then

$$
y=Q x
$$

maps the unit circle onto the unit circle.



## An arbitrary matrix

## Example

Given the matrix

$$
A=\left[\begin{array}{cc}
\sqrt{(2)} / 4 & -5 \sqrt{(2)} \\
-\sqrt{(2)} / 4 & -5 \sqrt{(2)}
\end{array}\right]
$$

then

$$
y=A x
$$

maps the unit circle onto an ellipse. Is this a coincidence?


## SVD: Singular Value Decomposition

SVD takes any $m \times n$ matrix $A$ and factors it:

$$
A=U S V^{T}
$$

where $U(m \times m)$ and $V(n \times n)$ are orthogonal and $S(m \times n)$ is diagonal. $S$ is made up of "singular values":

$$
\sigma_{1} \geqslant \sigma_{2} \geqslant \cdots \geqslant \sigma_{r} \geqslant \sigma_{r+1}=\cdots=\sigma_{p}=0
$$

Here, $r=\operatorname{rank}(A)$ and $p=\min (m, n)$. For $m>n$ the factorization appears as,

$\square$

## SVD in Python

From our previous example,

$$
A=\left[\begin{array}{cc}
\sqrt{(2)} / 4 & -5 \sqrt{(2)} \\
-\sqrt{(2)} / 4 & -5 \sqrt{(2)}
\end{array}\right]
$$

We use the Python "svd" function,
>>> import numpy.linalg
$2 \ggg$ import numpy as np
$3 \ggg A=n p . \operatorname{array}([[n p . s q r t(2) / .4 .,-5 . * n p . s q r t(2)],.[-n p . s q r t$ (2.)/4., $-5 * n p . \operatorname{sqrt}(2)]])$
>>> A
array $\left(\left[\begin{array}{l}{[0.35355339,-7.07106781] \text {, }}\end{array}\right.\right.$ [-0.35355339, -7.07106781]])
>>> U, S, V = numpy.linalg.svd(A)
>>> U
$\operatorname{array}\left(\left[\begin{array}{ll}{[0.70710678,-0.70710678]}\end{array}\right.\right.$,
[0.70710678, 0.70710678]])
>>> S
$\operatorname{array}([10 ., 0.5])$
>>> V
$\operatorname{array}([[-0 .,-1$.$] ,$
$[-1 .,-0]]$.

## SVD Application: Spheres map to Ellipsoids

If $A$ is a non-singular $n \times n$ matrix then $A$ maps circles(spheres) into ellipses(ellipsoids) and further,

$$
\begin{gathered}
A=U S V^{T} \\
A V=U S \\
A\left[v_{1}\left|v_{2}\right| \ldots \mid v_{n}\right]=\left[u_{1}\left|u_{2}\right| \ldots \mid u_{n}\right]\left[\begin{array}{lll}
\sigma_{1} & & \\
& \ddots & \\
& & \\
& \\
A v_{n}=\sigma_{1} u_{1}
\end{array}\right] \\
A v_{2}=\sigma_{2} u_{2} \\
\vdots \\
A v_{n}=\sigma_{n} u_{n}
\end{gathered}
$$

and the singular values $\sigma_{i}$ and left singular vectors $u_{i}$ are the length and directions respectively of the principal axes of the ellipsoid.

## SVD Application: computing $\|A\|_{2}, \mathrm{~K}_{2}(A)$

The singular values can be used to calculate the 2-norm of a matrix and the matrix condition number $\kappa(A)$.

$$
\begin{gathered}
\|A\|_{2}=\sigma_{\max }=\sigma_{1} \\
\|A\|_{2}\left\|A^{-1}\right\|_{2}=\kappa(A)=\frac{\sigma_{\max }}{\sigma_{\min }}=\frac{\sigma_{1}}{\sigma_{n}}
\end{gathered}
$$

## How is SVD performed?

We want to factorize $A$ into $U, S$, and $V^{T}$. First step: find $V$. Consider

$$
A=U S V^{T}
$$

and multiply by $A^{T}$

$$
A^{T} A=\left(U S V^{T}\right)^{T}\left(U S V^{T}\right)=V S^{T} U^{T} U S V^{T}
$$

Since $U$ is orthogonal

$$
A^{T} A=V S_{n \times n}^{2} V^{T}
$$

This is called a similarity transformation.

## Definition

Matrices $A$ and $B$ are similar if there is an invertible matrix $Q$ such that

$$
Q^{-1} A Q=B
$$

## Theorem

Similar matrices have the same eigenvalues.

## Proof

## Eigenvalues

Remember that a number $\lambda$ (which may be a complex number) is an eigenvalue of a matrix $A$ if there is a non-zero vector $v$ such that,

$$
(A-\lambda I) v=0
$$

$$
\begin{aligned}
B v & =\lambda v \\
Q^{-1} A Q v & =\lambda v \\
A Q v & =\lambda Q v \\
A w & =\lambda w .
\end{aligned}
$$

Further, if $v$ is an eigenvector of $B, Q v$ is an eigenvector of $A$.

## So far...

Need $A=U S V^{T}$
Look for $V$ such that $A^{T} A=V S_{n \times n}^{2} V^{T}$. Here $S^{2}$ is diagonal.
If $A^{T} A$ and $S^{2}$ are similar, then they have the same eigenvalues. So the diagonal matrix $S^{2}$ is just the eigenvalues of $A^{T} A$ and $V$ is the matrix of eigenvectors. To see the latter, note that since $S^{2}$ is diagonal, the eigenvectors
are $e_{i}$, and so we can write,

$$
S^{2} e_{i}=\sigma_{i}^{2} e_{i}
$$

and since,

$$
V^{T} v_{i}=e_{i}
$$

thus

$$
V S^{2} V^{T} v_{i}=V S^{2} e_{i}=V \sigma_{i}^{2} e_{i}=\sigma_{i}^{2} v_{i}
$$

## Similarly...

Now consider

$$
A=U S V^{T}
$$

and multiply by $A^{T}$ from the right

$$
A A^{T}=\left(U S V^{T}\right)\left(U S V^{T}\right)^{T}=U S V^{T} V S^{T} U^{T}
$$

Since $V$ is orthogonal

$$
A A^{T}=U S_{m \times m}^{2} U^{T}
$$

Now $U$ is the matrix of eigenvectors of $A A^{T}$.

## In the end...

## We get (for $m>n$ )

$$
A=\left[\begin{array}{ccc}
\vdots & \vdots & \vdots \\
u_{1} & \ldots & u_{m} \\
\vdots & \vdots & \vdots
\end{array}\right]\left[\begin{array}{cccccc}
\sigma_{1} & & & & \\
& \ddots & & & & \\
& & \sigma_{r} & & & \\
& & & 0 & & \\
& & & & \ddots & \\
0 & & & \ldots & & 0 \\
0 & & & \cdots & & 0
\end{array}\right]\left[\begin{array}{ccc}
\ldots & v_{1}^{T} & \ldots \\
\ldots & \vdots & \ldots \\
\ldots & v_{n}^{T} & \ldots
\end{array}\right]
$$

## Example

Decompose

$$
A=\left[\begin{array}{cc}
2 & -2 \\
1 & 1
\end{array}\right]
$$

First construct $A^{T} A$ :

$$
A^{T} A=\left[\begin{array}{cc}
2 & 1 \\
-2 & 1
\end{array}\right]\left[\begin{array}{cc}
2 & -2 \\
1 & 1
\end{array}\right]=\left[\begin{array}{cc}
5 & -3 \\
-3 & 5
\end{array}\right]
$$

Eigenvalues: $\lambda_{1}=8$ and $\lambda_{2}=2$. So

$$
S^{2}=\left[\begin{array}{ll}
8 & 0 \\
0 & 2
\end{array}\right] \Rightarrow S=\left[\begin{array}{cc}
2 \sqrt{2} & 0 \\
0 & \sqrt{2}
\end{array}\right]
$$

## Example

Now find $V^{T}$ and $U$. The columns of $V$ are the eigenvectors of $A^{T} A$.

- $\lambda_{1}=8:\left(A^{T} A-\lambda_{1} I\right) v_{1}=0$

$$
\Rightarrow\left[\begin{array}{ll}
-3 & -3 \\
-3 & -3
\end{array}\right] v_{1}=0 \quad \Rightarrow \quad\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right] v_{1}=0 \quad \Rightarrow \quad v_{1}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

normalized,

$$
v_{1}=\left[\begin{array}{c}
-\sqrt{2} / 2 \\
\sqrt{2} / 2
\end{array}\right]
$$

- $\lambda_{2}=2:\left(A^{T} A-\lambda_{2} I\right) v_{2}=0$

$$
\Rightarrow\left[\begin{array}{cc}
3 & -3 \\
-3 & 3
\end{array}\right] v_{2}=0 \quad \Rightarrow \quad\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right] v_{2}=0 \quad \Rightarrow \quad v_{2}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

normalized,

$$
v_{2}=\left[\begin{array}{l}
\sqrt{2} / 2 \\
\sqrt{2} / 2
\end{array}\right]
$$

- Finally:

$$
V=\left[\begin{array}{cc}
-\sqrt{2} / 2 & \sqrt{2} / 2 \\
\sqrt{2} / 2 & \sqrt{2} / 2
\end{array}\right]
$$

## Example

Now find $U$. The columns of $U$ are the eigenvectors of $A A^{T}$.

- $\lambda_{1}=8:\left(A A^{T}-\lambda_{1} I\right) u_{1}=0$

$$
\Rightarrow\left[\begin{array}{cc}
0 & 0 \\
0 & -6
\end{array}\right] u_{1}=0 \quad \Rightarrow \quad\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] u_{1}=0 \quad \Rightarrow \quad u_{1}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right]
$$

- $\lambda_{2}=2:\left(A A^{T}-\lambda_{2} I\right) u_{2}=0$

$$
\Rightarrow\left[\begin{array}{ll}
6 & 0 \\
0 & 0
\end{array}\right] u_{2}=0 \quad \Rightarrow \quad\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] u_{2}=0 \quad \Rightarrow \quad u_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

- Finally:

$$
U=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]
$$

- Together:

$$
A=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
2 \sqrt{2} & 0 \\
0 & \sqrt{2}
\end{array}\right]\left[\begin{array}{cc}
-\sqrt{2} / 2 & \sqrt{2} / 2 \\
\sqrt{2} / 2 & \sqrt{2} / 2
\end{array}\right]
$$

## SVD is Not Unique!

The normalized eigenvectors of $A^{T} A$ and $A A^{T}$ are not unique. We have the following valid combinations:

$$
\pm v_{1}= \pm\left[\begin{array}{c}
-\frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2}
\end{array}\right], \pm v_{2}= \pm\left[\begin{array}{c}
\frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2}
\end{array}\right], \pm u_{1}= \pm\left[\begin{array}{c}
-\frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2}
\end{array}\right], \pm u_{2}= \pm\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

However the only combinations of $\pm u_{1}, \pm v_{1}$ and $\pm u_{2}, \pm v_{2}$ that are valid are those that satisfy,

$$
A v_{n}=\sigma_{n} u_{n}
$$

which are for this specific problem,

$$
\left(+v_{1},+u_{1}\right),\left(-v_{1},-u_{1}\right),\left(+v_{2},+u_{2}\right),\left(-v_{2},-u_{2}\right)
$$

and this gives rise to a variety of value $U$ and $V$ matrix pairs,

$$
\begin{array}{ll}
U=\left[+u_{1} \mid+u_{2}\right], & V=\left[+v_{1} \mid+v_{2}\right] \\
U=\left[+u_{1} \mid-u_{2}\right], & V=\left[+v_{1} \mid-v_{2}\right] \\
U=\left[-u_{1} \mid+u_{2}\right], & V=\left[-v_{1} \mid+v_{2}\right] \\
U=\left[-u_{1} \mid-u_{2}\right], & V=\left[-v_{1} \mid-v_{2}\right]
\end{array}
$$

## SVD Application: Data Compression

How can we actually use $A=U S V^{T}$ ? We can use this to represent $A$ with far fewer entries...

Notice what $A=U S V^{T}$ looks like:

$$
A=\sigma_{1} u_{1} v_{1}^{T}+\sigma_{2} u_{2} v_{2}^{T}+\cdots+\sigma_{r} u_{r} v_{r}^{T}+0 u_{r+1} v_{r+1}^{T}+\cdots+0 u_{p} v_{p}^{T}
$$

This is easily truncated to

$$
A=\sigma_{1} u_{1} v_{1}^{T}+\sigma_{2} u_{2} v_{2}^{T}+\cdots+\sigma_{r} u_{r} v_{r}^{T}
$$

or even more terms can be truncated for small $\sigma_{i}$ (see MP3). What are the savings?

- $A$ takes $m \times n$ storage
- using $k$ terms of $U$ and $V$ takes $k(1+m+n)$ storage

