
Lecture 8
Banded, LU, Cholesky, SVD

T. Gambill

Department of Computer Science
University of Illinois at Urbana-Champaign

February 16, 2010

T. Gambill (UIUC) CS 357 February 16, 2010 1 / 54

More Algorithms for Special Systems

tridiagonal systems
banded systems
LU decomposition
Cholesky factorization

T. Gambill (UIUC) CS 357 February 16, 2010 2 / 54

Tridiagonal

A tridiagonal matrix A

d1 c1
a1 d2 c2

a2 d3 c3
.

ai−1 di ci
.
.

an−1 dn

storage is saved by not saving zeros
only n + 2(n − 1) = 3n − 2 places are needed to store the matrix versus n2

for the whole system
can operations be saved? yes!

T. Gambill (UIUC) CS 357 February 16, 2010 3 / 54

Tridiagonal

d1 c1
a1 d2 c2

a2 d3 c3
.

ai−1 di ci
.
.

an−1 dn

Start forward elimination (without any special pivoting)

1 subtract a1/d1 times row 1 from row 2
2 this eliminates a1, changes d2 and does not touch c2
3 continuing:

d̃i = di −

(
ai−1

d̃i−1
ci−1

)
b̃i = bi −

(
ai−1

d̃i−1
b̃i−1

)
for i = 2 . . . n

T. Gambill (UIUC) CS 357 February 16, 2010 4 / 54

Tridiagonal

d̃1 c1

d̃2 c2

d̃3 c3
.

d̃i ci
.

.
d̃n

This leaves an upper triangular (2-band). With back substitution:

1 xn = b̃n/d̃n

2 xn−1 = (1/d̃n−1)(b̃n−1 − cn−1xn)

3 xi = (1/d̃i)(b̃i − cixi+1)

T. Gambill (UIUC) CS 357 February 16, 2010 5 / 54

Tridiagonal Algorithm

1 input: n, a, d, c, b
2 for i = 2 to n
3 xmult = ai−1/di−1

4 di = di − xmult · ci−1

5 bi = bi − xmult · bi−1

6 end

7 xn = bn/dn

8 for i = n − 1 down to 1
9 xi = (bi − cixi+1)/di

10 end

T. Gambill (UIUC) CS 357 February 16, 2010 6 / 54

m-band

m = 5 m = 11 m = 11

the m correspond to the total width of the non-zeros
after a few passes of GE fill-in with occur within the band
so an empty band costs (about) the same as a non-empty band
one fix: reordering (e.g. Cuthill-McKee)
generally GE will cost O

(
(m−1

2)2n
)

for m-band systems

T. Gambill (UIUC) CS 357 February 16, 2010 7 / 54

Motivation: Symmetric Matrix

A is symmetric, if A = AT

If A = LU and A is symmetric, then could L = UT?
If so, this could save 50% of the computation of LU by only calculating L
Save 50% of the FLOPS!
This is achievable: LDLT and Cholesky (LLT) factorization

T. Gambill (UIUC) CS 357 February 16, 2010 8 / 54

Factorization Methods

Factorizations are the common approach to solving Ax = b:
simply organized Gaussian elimination.

Goals for today:
LU factorization
Cholesky factorization
Use of the backslash operator

T. Gambill (UIUC) CS 357 February 16, 2010 9 / 54

LU Factorization
Find L and U such that

A = LU

and L is lower triangular, and U is upper triangular.

L =

1 0 · · · 0
`2,1 1 0 0
`3,1 `3,2 1 0
...

...
. . .

...
`n,1 `n,2 · · · `n−1,n 1

U =

u1,1 u1,2 u1,3 · · · u1,n
0 u2,2 u2,3 · · · u2,n

0 0
.

...
...

... un−1,n
0 0 un,n

Since L and U are triangular, it is easy to apply their inverses.

T. Gambill (UIUC) CS 357 February 16, 2010 10 / 54

Why?

Since L and U are triangular, it is easy, O(n2), to apply their inverses
Decompose once, solve k right-hand sides quickly:

I O(kn3) with GE
I O(n3 + kn2) with LU

Given A = LU you can compute A−1, det(A), rank(A), ker(A), etc...

T. Gambill (UIUC) CS 357 February 16, 2010 11 / 54

LU Factorization

Since L and U are triangular, it is easy to apply their inverses.
Consider the solution to Ax = b.

A = LU =⇒ (LU)x = b

Regroup since matrix multiplication is associative

L(Ux) = b

Let Ux = y, then
Ly = b

Since L is triangular it is easy (without Gaussian elimination) to compute

y = L−1b

This expression should be interpreted as “Solve Ly = b with forward
substitution.”

T. Gambill (UIUC) CS 357 February 16, 2010 12 / 54

LU Factorization

Now, since y is known, solve for x

x = U−1y

which is interpreted as “Solve Ux = y with backward substitution.”

T. Gambill (UIUC) CS 357 February 16, 2010 13 / 54

LU Factorization

Listing 1: LU Solve
1 Factor A into L and U
2 Solve Ly = b for y use forward substitution

3 Solve Ux = y for x use backward substitution

T. Gambill (UIUC) CS 357 February 16, 2010 14 / 54

LU Factorization

If we have Ax = b and perform GE we end up with

A =

x x x x
x x x x
x x x x
x x x x

⇒

x ′ x ′ x ′ x ′

0 x ′ x ′ x ′

0 0 x ′ x ′

0 0 0 x ′

Remember from Lecture 6, that naive Gaussian Elimination can be done
by matrix multiplication

MAx = Mb

Ux = Mb

MA is upper triangular and called U
M is the elimination matrix

T. Gambill (UIUC) CS 357 February 16, 2010 15 / 54

LU Factorization

As an example take one column step of GE, A becomes
6 −2 2 4
12 −8 6 10
3 −13 9 3
−6 4 1 −18

→

6 −2 2 4
0 −4 2 2
0 −12 8 1
0 2 3 −14

using the elimination matrix

M1 =

1 0 0 0
−2 1 0 0
− 1

2 0 1 0
1 0 0 1

So we have performed

M1Ax = M1b

T. Gambill (UIUC) CS 357 February 16, 2010 16 / 54

LU Factorization

From Lecture 6
Inverting Mi is easy: just flip the sign of the lower triangular entries

M1 =

1 0 0 0
−2 1 0 0
− 1

2 0 1 0
1 0 0 1

 ⇒ M−1
1 =

1 0 0 0
2 1 0 0
1
2 0 1 0
−1 0 0 1

M−1

i is just the multipliers used in Gaussian Elimination!

M−1
i M−1

j is still lower triangular, for i < j,
and is the union of the columns
M−1

1 M−1
2 . . . M−1

j is lower triangular, with the lower triangle the multipliers
from Gaussian Elimination

T. Gambill (UIUC) CS 357 February 16, 2010 17 / 54

LU Factorization

Zeroing each column yields another elimination matrix operation:

M3M2M1Ax = M3M2M1b

M = M3M2M1. Thus
L = M−1

1 M−1
2 M−1

3 is lower triangular

MA = U
M3M2M1A = U

A = M−1
1 M−1

2 M−1
3 U

A = LU

T. Gambill (UIUC) CS 357 February 16, 2010 18 / 54

LU (forward elimination) Algorithm

Listing 2: LU
1 given A
2

3 for k = 1 . . . n − 1
4 for i = k + 1 . . . n
5 xmult = aik/akk

6 aik = xmult
7 for j = k + 1 . . . n
8 aij = aij − (xmult)akj

9 end

10 end

11 end

U is stored in the upper triangular portion of A
L (without the diagonal) is stored in the lower triangular

T. Gambill (UIUC) CS 357 February 16, 2010 19 / 54

Doolittle Factorization (LU)

Listing 3: Doolittle
1 given A
2 output L, U
3

4 for k = 1 . . . n
5 `kk = 1
6 for j = k . . . n
7 ukj = akj −

∑k−1
i=1 `kiuij

8 end

9 for j = k + 1 . . . n

10 `jk =
(

ajk −
∑k−1

i=1 `jiuik

)
/ukk

11 end

12 end

Mathematically the same as previous LU
Difference is we now explicitly form L and U

T. Gambill (UIUC) CS 357 February 16, 2010 20 / 54

What About Pivoting?

Pivoting (that is row exchanges) can be expressed in terms of matrix
multiplication
Do pivoting during elimination, but track row exchanges in order to
express pivoting with matrix P
Let P be all zeros

I Place a 1 in column j of row 1 to exchange row 1 and row j
I If no row exchanged needed, place a 1 in column 1 of row 1
I Repeat for all rows of P

P is a permutation matrix
Now using pivoting,

LU = PA

T. Gambill (UIUC) CS 357 February 16, 2010 21 / 54

Python LU
Like GE, LU needs pivoting. With pivoting the LU factorization always exists,
even if A is singular. With pivoting, we get

LU = PA

1 >>> import numpy as np

2 >>> import scipy.linalg

3 >>> A = scipy.rand(4,4)

4 >>> b = scipy.rand(4,1)

5 >>> A

6 array([[0.50742833, 0.29832637, 0.87906078, 0.11219151],

7 [0.58297164, 0.31504083, 0.33923234, 0.294866],

8 [0.45099647, 0.34853809, 0.55473901, 0.52446345],

9 [0.07995563, 0.31020355, 0.88319642, 0.9922531]])

10 >>> b

11 array([[0.04539488],

12 [0.25711279],

13 [0.55651992],

14 [0.24906525]])

15 >>> LU = scipy.linalg.lu_factor(A)

16 >>> LU

17 >>> x = scipy.linalg.lu_solve(LU,b)

18 (array([[0.87906078, 0.57723918, 0.12762657, 0.33936945],

19 [0.33923234, 0.38715344, 0.64979646, 0.51637339],

20 [0.55473901, 0.13077937, 0.36868404, 0.25155858],

21 [0.88319642, -0.42985995, 1.15885524, -0.05907806]]),

array([2, 2, 3, 3], dtype=int32))

22 >>> x

23 array([[-5.75628116],

24 [15.83236907],

25 [-1.64503985],

26 [-2.77051444]])

T. Gambill (UIUC) CS 357 February 16, 2010 22 / 54

LU Tutorial Module

http://www.cse.illinois.edu/iem/linear_equations/gaussian_elimination/

T. Gambill (UIUC) CS 357 February 16, 2010 23 / 54

http://www.cse.illinois.edu/iem/linear_equations/gaussian_elimination/

Use SYMMETRY ! YRTEMMYS esU

Suppose
A = LU, and A = AT

Then
LU = A = AT = (LU)T = UTLT

Thus
U = L−1UTLT

and
U(LT)−1 = L−1UT = D

We can conclude that
U = DLT

and
A = LU = LDLT

T. Gambill (UIUC) CS 357 February 16, 2010 24 / 54

Symmetric Doolittle Factorization (LDLT)

Listing 4: Symm Doolittle
1 given A
2 output L, D
3

4 for k = 1 . . . n
5 `kk = 1
6

7 dk = akk −
∑k−1
ν=1 dν`2kν

8

9 for j = k + 1 . . . n
10 `kj = 0

11 `jk =
(

ajk −
∑k−1
ν=1 `jνdν`kν

)
/dk

12 end

13 end

Special form of the Doolittle factorization

T. Gambill (UIUC) CS 357 February 16, 2010 25 / 54

LLT: Cholesky Factorization

A must be symmetric and positive definite (SPD)
A is Positive Definite (PD) if for all x , 0 the following holds

xTAx > 0

Positive definite gives us an all positive D in A = LDLT

I Let x = (LT)−1ei, where ei is the i-th column of I

L becomes LD1/2 (NOT necessarily unit lower triangular as in LU
factorization!
A = LLT, i.e. L = UT

I Half as many flops as LU!
I Only calculate L not U

T. Gambill (UIUC) CS 357 February 16, 2010 26 / 54

Cholesky 2x2 example[
a11 a21
a21 a22

]
=

[
l11 0
l21 l22

]
∗
[

l11 l21
0 l22

]
implies that

l11 =
√

a11, l21 = a21/l11, l22 =
√

a22 − l221

T. Gambill (UIUC) CS 357 February 16, 2010 27 / 54

Cholesky Factorization

Listing 5: Cholesky
1 given A
2 output L
3

4 for k = 1 . . . n

5 `kk =
(

akk −
∑k−1

i=1 `
2
ki

)1/2

6

7 for j = k + 1 . . . n

8 `jk =
(

ajk −
∑k−1

i=1 `ji`ki

)
/`kk

9 end

10 end

T. Gambill (UIUC) CS 357 February 16, 2010 28 / 54

Why SPD?

In general, SPD gives us
non singular

I If xTAx > 0, for all nonzero x
I Then Ax , 0 for all nonzero x
I Hence, the columns of A are linearly independent

No pivoting
I From algorithm, can derive that
|lkj| 6

√
akk

I Elements of L do not grow with respect to A
I For short proof see book

Cholesky faster than LU
I No pivoting
I Only calculate L, not U

T. Gambill (UIUC) CS 357 February 16, 2010 29 / 54

Why SPD?

A matrix is Positive Definite (PD) if for all x , 0 the following holds

xTAx > 0

For SPD matrices, use the Cholesky factorization, A = LLT

Cholesky Factorization
I Requires no pivoting
I Requires one half as many flops as LU factorization, that is only calculate L

not L and U.
I Cholesky will be more than twice as fast as LU because no pivoting means

no data movement

Use Python linalg.cholesky(A) or MATLAB’s built-in chol(A) function for
routine work.
If A is positive definite then so is A−1 and An for n = 2, 3, 4,
If A and B are positive definite then so is A + B.

T. Gambill (UIUC) CS 357 February 16, 2010 30 / 54

Motivation Revisited

Multiple right hand sides
Solve Ax = b for k different b vectors
Using LU factorization, the cost is O(n3) + O(kn2)

Using Gaussian Elimination, the cost is O(kn3)

If A is symmetric
Save 50% of the flops with LDLT factorization
Save 50% of the flops and many memory operations with
Cholesky (LLT) factorization

T. Gambill (UIUC) CS 357 February 16, 2010 31 / 54

SVD: motivation

SVD uses in practice:
1 Search Technology: find closely related documents or images in a

database
2 Clustering: aggregate documents or images into similar groups
3 Compression: efficient image storage
4 Principal axis: find the main axis of a solid (engineering/graphics)
5 Summaries: Given a textual document, ascertain the most representative

tags
6 Graphs: partition graphs into subgraphs (graphics, analysis)

T. Gambill (UIUC) CS 357 February 16, 2010 32 / 54

A geometric view of y = Ax

Example
Given the matrix

D =

[
10 0
0 0.5

]
then

y = Dx

maps the unit circle onto an ellipse.

T. Gambill (UIUC) CS 357 February 16, 2010 33 / 54

A geometric view of y = Ax

Example
Given the matrix

Q =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
then

y = Qx

maps the unit circle onto the unit circle.

T. Gambill (UIUC) CS 357 February 16, 2010 34 / 54

A geometric view of y = Ax

Diagonal Matrices
The matrix D in a previous example is called a diagonal matrix.

Orthogonal Matrices
The matrix Q in a previous example is called a orthogonal matrix since
QQT = I.

T. Gambill (UIUC) CS 357 February 16, 2010 35 / 54

Orthogonality, Orthonormality

Definition
If u and v are n× 1 vectors then < u, v >= uT ∗ v is called the standard inner
product of u with v. We have < u, u >= ||u||22.

From calculus, we know that the angle θ between two vectors can be
computed from the following,

Angle between vectors

< u, v >= ||u||2||v||2 cos(θ)

Definition
Vectors u and v are said to be orthogonal (perpendicular) if < u, v >= 0.

Definition
Vectors u and v are said to be orthonormal if < u, v >= 0 and ||u||2 = ||v||2 = 1.

T. Gambill (UIUC) CS 357 February 16, 2010 36 / 54

Properties of AT

Theorem
If A is an n× n real valued matrix then for any n× 1 vectors u and v,

< Au, v >=< u, ATv >

This follows from the definition of the standard inner product, since

< Au, v >= (Au)Tv = (uTAT)v = uT(ATv) =< u, ATv >

T. Gambill (UIUC) CS 357 February 16, 2010 37 / 54

Properties of Orthogonal Matrices

Definition
An n× n matrix Q is called orthogonal if QQT = QTQ = I.

Q−1 = QT

the columns of Q are orthonormal
the rows of Q are orthonormal
||Qx||2 = ||x||2 for all x

T. Gambill (UIUC) CS 357 February 16, 2010 38 / 54

Another example of an orthogonal matrix

Example
Given the matrix

Q =

[
0 −1
−1 0

]
then

y = Qx

maps the unit circle onto the unit circle.

T. Gambill (UIUC) CS 357 February 16, 2010 39 / 54

An arbitrary matrix

Example
Given the matrix

A =

[√
(2)/4 −5

√
(2)

−
√
(2)/4 −5

√
(2)

]
then

y = Ax

maps the unit circle onto an ellipse. Is this a coincidence?

T. Gambill (UIUC) CS 357 February 16, 2010 40 / 54

SVD: Singular Value Decomposition
SVD takes any m× n matrix A and factors it:

A = USVT

where U (m×m) and V (n× n) are orthogonal and S (m× n) is diagonal.
S is made up of “singular values”:

σ1 > σ2 > · · · > σr > σr+1 = · · · = σp = 0

Here, r = rank(A) and p = min(m, n). For m > n the factorization appears as,

A =

...

...
...

u1 . . . um
...

...
...

σ1
. . .

σr
0

. . .
0

0 . . . 0
0 . . . 0

. . . vT
1 . . .

. . .
... . . .

. . . vT
n . . .

T. Gambill (UIUC) CS 357 February 16, 2010 41 / 54

SVD in Python
From our previous example,

A =

[√
(2)/4 −5

√
(2)

−
√

(2)/4 −5
√

(2)

]
We use the Python ”svd” function,

1 >>> import numpy.linalg

2 >>> import numpy as np

3 >>> A = np.array([[np.sqrt(2.)/4., -5.*np.sqrt(2.)],[-np.sqrt

(2.)/4.,-5*np.sqrt(2)]])

4 >>> A

5 array([[0.35355339, -7.07106781],

6 [-0.35355339, -7.07106781]])

7 >>> U, S, V = numpy.linalg.svd(A)

8 >>> U

9 array([[0.70710678, -0.70710678],

10 [0.70710678, 0.70710678]])

11 >>> S

12 array([10. , 0.5])

13 >>> V

14 array([[-0., -1.],

15 [-1., -0.]])

T. Gambill (UIUC) CS 357 February 16, 2010 42 / 54

SVD Application: Spheres map to Ellipsoids
If A is a non-singular n× n matrix then A maps circles(spheres) into
ellipses(ellipsoids) and further,

A = USVT

AV = US

A
[
v1|v2| . . . |vn

]
=
[
u1|u2| . . . |un

] σ1
. . .

σn

Av1 = σ1u1

Av2 = σ2u2

...
Avn = σnun

and the singular values σi and left singular vectors ui are the length and
directions respectively of the principal axes of the ellipsoid.

T. Gambill (UIUC) CS 357 February 16, 2010 43 / 54

SVD Application: computing ||A||2 , κ2(A)

The singular values can be used to calculate the 2-norm of a matrix and the
matrix condition number κ(A).

||A||2 = σmax = σ1

||A||2 ||A−1||2 = κ(A) =
σmax

σmin
=
σ1

σn

T. Gambill (UIUC) CS 357 February 16, 2010 44 / 54

How is SVD performed?
We want to factorize A into U, S, and VT. First step: find V. Consider

A = USVT

and multiply by AT

ATA = (USVT)T(USVT) = VSTUTUSVT

Since U is orthogonal
ATA = VS2

n×nVT

This is called a similarity transformation.

Definition
Matrices A and B are similar if there is an invertible matrix Q such that

Q−1AQ = B

Theorem
Similar matrices have the same eigenvalues.

T. Gambill (UIUC) CS 357 February 16, 2010 45 / 54

Proof

Eigenvalues
Remember that a number λ (which may be a complex number) is an
eigenvalue of a matrix A if there is a non-zero vector v such that,

(A − λI)v = 0

Bv = λv

Q−1AQv = λv
AQv = λQv

Aw = λw.

Further, if v is an eigenvector of B, Qv is an eigenvector of A.

T. Gambill (UIUC) CS 357 February 16, 2010 46 / 54

So far...

Need A = USVT

Look for V such that ATA = VS2
n×nVT. Here S2 is diagonal.

If ATA and S2 are similar, then they have the same eigenvalues. So the
diagonal matrix S2 is just the eigenvalues of ATA and V is the matrix of
eigenvectors. To see the latter, note that since S2 is diagonal, the eigenvectors

are ei, and so we can write,
S2ei = σ

2
i ei

and since,
VTvi = ei

thus
VS2VTvi = VS2ei = Vσ2

i ei = σ
2
i vi

T. Gambill (UIUC) CS 357 February 16, 2010 47 / 54

Similarly...

Now consider
A = USVT

and multiply by AT from the right

AAT = (USVT)(USVT)T = USVTVSTUT

Since V is orthogonal
AAT = US2

m×mUT

Now U is the matrix of eigenvectors of AAT.

T. Gambill (UIUC) CS 357 February 16, 2010 48 / 54

In the end...

We get (for m > n)

A =

...

...
...

u1 . . . um
...

...
...

σ1
. . .

σr
0

. . .
0

0 . . . 0
0 . . . 0

. . . vT
1 . . .

. . .
... . . .

. . . vT
n . . .

T. Gambill (UIUC) CS 357 February 16, 2010 49 / 54

Example

Decompose

A =

[
2 −2
1 1

]
First construct ATA:

ATA =

[
2 1
−2 1

] [
2 −2
1 1

]
=

[
5 −3
−3 5

]
Eigenvalues: λ1 = 8 and λ2 = 2. So

S2 =

[
8 0
0 2

]
⇒ S =

[
2
√

2 0
0

√
2

]

T. Gambill (UIUC) CS 357 February 16, 2010 50 / 54

Example
Now find VT and U. The columns of V are the eigenvectors of ATA.

λ1 = 8: (ATA − λ1I)v1 = 0

⇒
[
−3 −3
−3 −3

]
v1 = 0 ⇒

[
1 1
0 0

]
v1 = 0 ⇒ v1 =

[
−1
1

]
normalized,

v1 =

[
−
√

2/2√
2/2

]
λ2 = 2: (ATA − λ2I)v2 = 0

⇒
[

3 −3
−3 3

]
v2 = 0 ⇒

[
1 −1
0 0

]
v2 = 0 ⇒ v2 =

[
1
1

]
normalized,

v2 =

[√
2/2√
2/2

]
Finally:

V =

[
−
√

2/2
√

2/2√
2/2

√
2/2

]
T. Gambill (UIUC) CS 357 February 16, 2010 51 / 54

Example

Now find U. The columns of U are the eigenvectors of AAT.
λ1 = 8: (AAT − λ1I)u1 = 0

⇒
[

0 0
0 −6

]
u1 = 0 ⇒

[
0 1
0 0

]
u1 = 0 ⇒ u1 =

[
−1
0

]
λ2 = 2: (AAT − λ2I)u2 = 0

⇒
[

6 0
0 0

]
u2 = 0 ⇒

[
1 0
0 0

]
u2 = 0 ⇒ u2 =

[
0
1

]
Finally:

U =

[
−1 0
0 1

]
Together:

A =

[
−1 0
0 1

] [
2
√

2 0
0

√
2

] [
−
√

2/2
√

2/2√
2/2

√
2/2

]
T. Gambill (UIUC) CS 357 February 16, 2010 52 / 54

SVD is Not Unique!
The normalized eigenvectors of ATA and AAT are not unique. We have the
following valid combinations:

±v1 = ±

[
−
√

2
2√
2

2

]
,±v2 = ±

[√
2

2√
2

2

]
,±u1 = ±

[
−
√

2
2√
2

2

]
,±u2 = ±

[
0
1

]
However the only combinations of ±u1,±v1 and ±u2,±v2 that are valid are
those that satisfy,

Avn = σnun

which are for this specific problem,

(+v1,+u1), (−v1,−u1), (+v2,+u2), (−v2,−u2)

and this gives rise to a variety of value U and V matrix pairs,

U = [+u1 | + u2], V = [+v1 | + v2]

U = [+u1 | − u2], V = [+v1 | − v2]

U = [−u1 | + u2], V = [−v1 | + v2]

U = [−u1 | − u2], V = [−v1 | − v2]

T. Gambill (UIUC) CS 357 February 16, 2010 53 / 54

SVD Application: Data Compression
How can we actually use A = USVT? We can use this to represent A with far
fewer entries...

Notice what A = USVT looks like:

A = σ1u1vT
1 + σ2u2vT

2 + · · ·+ σrurvT
r + 0ur+1vT

r+1 + · · ·+ 0upvT
p

This is easily truncated to

A = σ1u1vT
1 + σ2u2vT

2 + · · ·+ σrurvT
r

or even more terms can be truncated for small σi (see MP3).
What are the savings?

A takes m× n storage
using k terms of U and V takes k(1 + m + n) storage

T. Gambill (UIUC) CS 357 February 16, 2010 54 / 54

