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More Algorithms for Special Systems

@ tridiagonal systems

@ banded systems

@ LU decomposition

@ Cholesky factorization
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Tridiagonal

A tridiagonal matrix A

dl C1
a dy o
a d3 ¢

a1 di ¢

An—1 dn_

@ storage is saved by not saving zeros

@ only n+2(n—1) = 3n—2 places are needed to store the matrix versus n?
for the whole system

@ can operations be saved? yes!
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Tridiagonal

di ¢
m d o
a ds C3

L An—1 dn_
Start forward elimination (without any special pivoting)
@ subtract a; /d; times row 1 from row 2

@ this eliminates a;, changes d, and does not touch ¢,

@ continuing:
~ a;_ ~ a1~
t-a (o) hoa- (20
fori=2...n

T. Gambill (UIUC) CS 357 February 16, 2010 4/54

1



Tridiagonal

d o _
dy ©

5_.1:

Ci

dy |
This leaves an upper triangular (2-band). With back substitution:
Q x, =bu/dy
Q x, 1= (1/dy—1)(by1 — cu1xs)
Q xi = (1/d;)(b; — cixis1)

I
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© ® N o o B~ 0 N =

o

input: n,a,d,c,b
for i=2 to n
xmult = ai_l/di_l
d; = d; — xmult - ¢; 4
bi = bi — xmult - bi—l
end
Xp = bn/dn
for i=n—1 down to 1
x; = (b — cixizq)/d;
end

«a0>» «F»r « =>»
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m-band

ne-st

m=>5 m=11

@ the m correspond to the total width of the non-zeros

@ after a few passes of GE fill-in with occur within the band

@ so an empty band costs (about) the same as a non-empty band
@ one fix: reordering (e.g. Cuthill-McKee)

@ generally GE will cost O((*;1)?n) for m-band systems
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Motivation: Symmetric Matrix

@ Ais symmetric, if A = AT

@ If A =LU and A is symmetric, then could L = U'?

@ If so, this could save 50% of the computation of LU by only calculating L
@ Save 50% of the FLOPS!

@ This is achievable: LDLT and Cholesky (LLT) factorization

1
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Factorization Methods

Factorizations are the common approach to solving Ax = b:
simply organized Gaussian elimination.

Goals for today:
@ LU factorization
@ Cholesky factorization
@ Use of the backslash operator

1
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LU Factorization

Find L and U such that
A=LU

and L is lower triangular, and U is upper triangular.

1 0o --- 0
€1 1 0 0
L= |61 &2 1 0
en,l En,2 e enfl,n 1
1 Wiz U3 - Ul
0 upp uzz -+ Uy
uUu=1,20 0
. : Un—1n
0 0 Upn

Since L and U are triangular, it is easy to apply their inverses.
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Why?

@ Since L and U are triangular, it is easy, O(rn?), to apply their inverses
@ Decompose once, solve k right-hand sides quickly:

> O(kn®) with GE

> O(n® 4+ kn?) with LU

@ Given A = LU you can compute A~!, det(A), rank(A), ker(A), efc...

1
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LU Factorization
Since L and U are triangular, it is easy to apply their inverses.
Consider the solution to Ax = b.
A=LU= (LU)x =D
Regroup since matrix multiplication is associative
L(Ux)="b

Let Ux =y, then
Ly=5b

Since L is triangular it is easy (without Gaussian elimination) to compute
y= L'

This expression should be interpreted as “Solve Ly = b with forward
substitution.”
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Now, since y is known, solve for x

x=Uly

which is interpreted as “Solve Ux = y with backward substitution.”

it
v
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Factor A into L and U
Solve Ly=0b for y
Solve Ux=y for x

«0O0>» «F»r « > « Q>

Listing 1: LU Solve

use forward substitution
use backward substitution
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LU Factorization

@ If we have Ax = b and perform GE we end up with

li

=

x' x!
x' x!
0 x'
0 0

R R R R
=2 K R R
=2 KR R R
=R R R R
o OO

@ Remember from Lecture 6, that naive Gaussian Elimination can be done
by matrix multiplication

MAx = Mb
Ux = Mb

@ MA is upper triangular and called U
@ M is the elimination matrix

1
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LU Factorization

As an example take one column step of GE, A becomes

6 —2 2 4 6
12 -8 6 10 . 0
3 -13 9 3 0
-6 4 1 -18 0

using the elimination matrix
1 00
-2 10
M = -1 01
1 0 0

So we have performed

MlAX:Mlb
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LU Factorization

From Lecture 6
@ Inverting M,; is easy: just flip the sign of the lower triangular entries

1 000 1 000

-2 100 2 100
My = = M;'=

-1 010 1 1010

1 00 1 -1 0 0 1

@ M; ' is just the multipliers used in Gaussian Elimination!

° Mle]fl is still lower triangular, for i < j,
and is the union of the columns

® M;'M,"...M; " is lower triangular, with the lower triangle the multipliers
from Gaussian Elimination

1
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LU Factorization

@ Zeroing each column yields another elimination matrix operation:
M3M2M1Ax = M3M2Mlb

e M = MzM,M;. Thus
o L =M,;'M,'M;"is lower triangular

MA=U
M;MyMiA = U
A=M"M; MU
A=LU
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U (forward elimination) Algorithm

Listing 2: LU

given A

for k=1...n—1
for i=k+1...n
xmult = ay./a
Aik = xmult
for j=k+1...n
Lli/' = ﬂ,‘]‘ — (xmult)akj
end
end
end

@ U is stored in the upper triangular portion of A
@ L (without the diagonal) is stored in the lower triangular
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Doolittle Factorization (LU)

Listing 3: Doolittle

given A
output L, U

for k=1...n
ekk=1
for j=k...n
Uy = Ay — b Lriv
end
for j=k+1...n

b = (ﬂ/k -y eji”ik) / Ukk
end

end

@ Mathematically the same as previous LU
@ Difference is we now explicitly form L and U
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What About Pivoting?

@ Pivoting (that is row exchanges) can be expressed in terms of matrix
multiplication

@ Do pivoting during elimination, but track row exchanges in order to
express pivoting with matrix P
@ Let P be all zeros

» Place a1 in column j of row 1 to exchange row 1 and row j
~ If no row exchanged needed, place a 1 in column 1 of row 1
~ Repeat for all rows of P

@ P is a permutation matrix

@ Now using pivoting,
LU=PA

1
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P T S I S

Python LU

Like GE, LU needs pivoting. With pivoting the LU factorization always exists,
even if A is singular. With pivoting, we get

LU=PA

>>> import numpy as np
>>> import scipy.linalg
>>> A = scipy.rand(4,4)
>>> b = scipy.rand(4,1)

>>> A

array ([[ 0.50742833, 0.29832637, 0.87906078, 0.11219151],
[ 0.58297164, 0.31504083, 0.33923234, 0.294866 1],
[ 0.45099647, 0.34853809, 0.55473901, 0.52446345],
[ 0.07995563, 0.31020355, 0.88319642, 0.9922531 ]1]1)

>>> b

array ([[ 0.04539488],
[ 0.25711279],
[ 0.55651992],
[ 0.24906525]1)

>>> LU = scipy.linalg.lu_factor (A)

>>> LU

>>> x = scipy.linalg.lu_solve(LU,b)

(array([[ 0.87906078, 0.57723918, 0.12762657, 0.33936945],
[ 0.33923234, 0.38715344, 0.64979646, 0.51637339],
[ 0.55473901, 0.13077937, ©0.36868404, 0.25155858],
[ 0.88319642, -0.42985995, 1.15885524, -0.05907806]11),

array([2, 2, 3, 3], dtype=int32))

>>> X

array ([[ -5.75628116],
[ 15.83236907],
[ -1.64503985],
[ -2.77051444]])
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http://www.cse.illinois.edu/iem/linear_equations/gaussian_elimination/
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http://www.cse.illinois.edu/iem/linear_equations/gaussian_elimination/

Use SYMMETRY | YRTEMMYS esU

@ Suppose
A=LU, and A=AT
@ Then
LU=A=AT =) =Uu"L”
@ Thus
u=L"urr’
and

uihH"t=L"'u"=p

@ We can conclude that
u=npLT

and
A=LU=LDLT
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Symmetric Doolittle Factorization (LDLT)

Listing 4: Symm Doolittle

given A
output L, D

for k=1...n
b =1
de=ay— Y 5 d 2,

for j=k+1...n
b =0
G = (@ — L5 Godvbio ) /e
end
end

@ Special form of the Doolittle factorization
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LL”: Cholesky Factorization

@ A must be symmetric and positive definite (SPD)
@ A is Positive Definite (PD) if for all x # 0 the following holds

xTAx >0

@ Positive definite gives us an all positive D in A = LDL"
» Let x = (L") 'e;, where ¢; is the i-th column of I
@ L becomes LD'/? (NOT necessarily unit lower triangular as in LU
factorization!
e A=LLTie. L=UT
» Half as many flops as LU!
> Only calculate L not U
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implies that

an an| _ (ln 0 . hi I
ar1 Ay b1 Ixn 0

L

i = Vo, bi=an/ln, In=y/an -0
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Listing 5: Cholesky

1 given A
2 output L
3
4 for k=1...n
B 1/2
5 by = (ﬂkk -ra %-)
6
7 for j=k+1...n
8 b = (ﬂjk — ) ejieki) /U
9 end
10 end
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Why SPD?

In general, SPD gives us
@ non singular
» If xTAx > 0, for all nonzero x
» Then Ax # 0 for all nonzero x
» Hence, the columns of A are linearly independent
@ No pivoting
» From algorithm, can derive that
il < v
» Elements of L do not grow with respect to A
~ For short proof see book
@ Cholesky faster than LU
» No pivoting
> Only calculate L, not U
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Why SPD?

A matrix is Positive Definite (PD) if for all x # 0 the following holds

xTAx >0

For SPD matrices, use the Cholesky factorization, A = LLT
Cholesky Factorization
» Requires no pivoting
> Requires one half as many flops as LU factorization, that is only calculate L
not L and U.
» Cholesky will be more than twice as fast as LU because no pivoting means
no data movement
Use Python linalg.cholesky(A) or MATLAB’s built-in chol (A) function for
routine work.

If A is positive definite then so is A~' and A" forn =2,3,4, ....
If A and B are positive definite then so is A + B. 1
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Motivation Revisited

Multiple right hand sides
@ Solve Ax = b for k different b vectors
@ Using LU factorization, the cost is O(n%) 4+ O(kn?)
@ Using Gaussian Elimination, the cost is O(kn?)
If A is symmetric
@ Save 50% of the flops with LDLT factorization

@ Save 50% of the flops and many memory operations with
Cholesky (LLT) factorization
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SVD: motivation

SVD uses in practice:

@ Search Technology: find closely related documents or images in a
database

@ Clustering: aggregate documents or images into similar groups
@ Compression: efficient image storage
@ Principal axis: find the main axis of a solid (engineering/graphics)

@ Summaries: Given a textual document, ascertain the most representative
tags
@ Graphs: partition graphs into subgraphs (graphics, analysis)

1
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A geometric view of y = Ax

Example
Given the matrix
10 0
b= {0 0.5]
then
y=Dx

maps the unit circle onto an ellipse.

15

=15
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A geometric view of y = Ax

Example
Given the matrix
0= cos(0) —sin(0)
~ |sin(0)  cos(0)
then
y=Qx
maps the unit circle onto the unit circle.

25 25
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A geometric view of y = Ax

Diagonal Matrices
The matrix D in a previous example is called a diagonal matrix.

Orthogonal Matrices
The matrix Q in a previous example is called a orthogonal matrix since

QQ" =1

I
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Orthogonality, Orthonormality

Definition

If # and v are n x 1 vectors then < u,v >= u” % v is called the standard inner

product of u with v. We have < u, u >= |[ull3.

From calculus, we know that the angle 6 between two vectors can be

computed from the following,
Angle between vectors

< u,v >=lull/|vll> cos(8)

Definition

Vectors u and v are said to be orthogonal (perpendicular) if < u,v >= 0.

Definition

Vectors u and v are said to be orthonormal if < u,v >= 0 and ||ull, = ||[v|, = 1.

T. Gambill (UIUC) CS 357
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Properties of AT

Theorem
If A is an n x n real valued matrix then for any n x 1 vectors u and v,

< Au,v>=<u,ATv >

This follows from the definition of the standard inner product, since

< Au,v >= (Au)v = (uWTAT o = uT(ATv) =< u, ATv >

T. Gambill (UIUC) CS 357 February 16, 2010
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Properties of Orthogonal Matrices

Definition
An n x n matrix Q is called orthogonal if QQT = QTQ = I. J

e Q1=0QT
@ the columns of Q are orthonormal
@ the rows of Q are orthonormal

@ [|Qxll> = llx]l> for all x

I
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Another example of an orthogonal matrix

Example
Given the matrix

then
y=Qx
maps the unit circle onto the unit circle.

25

15

18
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An arbitrary matrix

Example
Given the matrix

Ao V(2)/4 —5,/(2)
—/(2)/4 —5./(2)
then
y =Ax

maps the unit circle onto an ellipse. Is this a coincidence?

25
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SVD: Singular Value Decomposition
SVD takes any m x n matrix A and factors it:
A=UsvT

where U (m x m) and V (n x n) are orthogonal and S (m x n) is diagonal.
S is made up of “singular values”:

0'120'2>~-~>0‘r20'7+1:...:0-p:0

Here, r = rank(A) and p = min(m,n). For m > n the factorization appears as,

oy -
: Or 0 0.1
A= |u U :
. 0 'UZ
0 . 0
K . 0] 1
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SVD in Python

From our previous example,

Ao | V@A 5V
-/)/4 -5/(2)

We use the Python "svd” function,

1 >>> import numpy.linalg
2 >>> import numpy as np

3 >>> A = np.array([[np.sqrt(2.)/4., -5.*np.sqrt(2.)],[-np.sqrt

(2.)/4.,-5*np.sqrt(2)11)
4 >>> A
s array ([[ 0.35355339, -7.07106781],
6 [-0.35355339, -7.0710678111)
7 >>> U, S, V = numpy.linalg.svd(A)
s >>> U
9 array([[ 0.70710678, -0.70710678],

10 [ 0.70710678, 0.7071067811)
11 >>> S

12 array ([ 10. , 0.51)

13 >>> V

14 array([[-0., -1.],

15 [-1., -0.1D
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SVD Application: Spheres map to Ellipsoids

If A is a non-singular n x n matrix then A maps circles(spheres) into
ellipses(ellipsoids) and further,

A=UsvVT

AV =US

01
Alvilval. .. [vp] = [mlual ... uy]

Oy
AZ)l = 01U
sz = 02Uy
Av, = o,u,

and the singular values o; and left singular vectors u; are the length and
directions respectively of the principal axes of the ellipsoid:
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SVD Application: computing ||All> , k2(A)

The singular values can be used to calculate the 2-norm of a matrix and the
matrix condition number k(A).

Al = Opax = 01

— Y 01
AL A7 L =k(A) = == = =
Omin Oy

I
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How is SVD performed?

We want to factorize A into U, S, and V. First step: find V. Consider
A=Usv"
and multiply by AT
ATA = (usvhT(usv?h) = vstu'usv’
Since U is orthogonal
ATA=VvSss VT

nxn

This is called a similarity transformation.

Definition

Matrices A and B are similar if there is an invertible matrix Q such that
Q 'AQ=B

Theorem

Similar matrices have the same eigenvalues.
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Proof

Eigenvalues

Remember that a number A (which may be a complex number) is an
eigenvalue of a matrix A if there is a non-zero vector v such that,

(A—A)v=0
Bv =MAv
Q 'AQu =M\v
AQu =AQu
Aw = Aw.

Further, if v is an eigenvector of B, Qu is an eigenvector of A.
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So far...

Need A = USVT
Look for V such that ATA = VS2_,VT. Here S? is diagonal.

If ATA and S? are similar, then they have the same eigenvalues. So the
diagonal matrix S? is just the eigenvalues of ATA and V is the matrix of
eigenvectors. To see the latter, note that since S? is diagonal, the eigenvectors

are ¢;, and so we can write,
5261' = 0'1'261‘

and since,
VTZ),' =€

thus
V52VTU,‘ = VSze,- = V(rfe,- = 0'1'2?]1'

1

T. Gambill (UIUC) CS 357 February 16, 2010 47 /54



Similarly...

Now consider
A=USVT

and multiply by AT from the right
AAT = (usvh(usvh™ = usvTvstu’

Since V is orthogonal
AAT =us?, U’

Now U is the matrix of eigenvectors of AAT.
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We get (fOr m > n)

o1 -
o, i v{
0 ol
0 0
| 0 0

it
v
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Decompose

2 =2
a=[t 7]
First construct ATA:
r, [2 172 =2] [5 -3
AA—[—z 1t 1"
Eigenvalues: Ay =8 and A, = 2. So

szz[g g] = S:[zﬁ

«0O0>» «F»r « > « Q>

it
v



Example

Now find VT and U. The columns of V are the eigenvectors of ATA.
@ A\ =8: (ATA — )\11)?]1 =0

-3 -3 _0 1 1 _0 -1
= 3 _3 01 = = 0 0 01 = = U1 = 1
normalized,

[

oA =2: (ATA —7\21)1)2 =0

= {_33 3}02—0 = B 01}02—0 = Uy = m
normalized,
o — {ﬁ/z]
27 V22
@ Finally:
o [ V2/2 ﬁ/z}
Tl v22 V22
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Example

Now find U. The columns of U are the eigenvectors of AAT.
@ A\ =8: (AAT 77\11)141 =0

:>|:0 0 uy =0 = up =0 = u =

0 —6

o
—_
1
|
—_
1

oA\ =2: (AAT —)\21)112 =0

60, 1o _, ~[o
0 O_le— = | _1/{2— = Uy =
0
1

eh [Pl

@ Finally:
u

Il
|
e -

@ Together:
[; =
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SVD is Not Unique!

The normalized eigenvectors of ATA and AAT are not unique. We have the
following valid combinations:

_2 V2 _\2 0
ivlzi \/% ,i?}zzi \%ﬁ ,iulzi \/% ,iu2:i|:1:|
2 2 2

However the only combinations of +u;, +v; and +u,, +v, that are valid are
those that satisfy,
Avn = Ouly
which are for this specific problem,
(+vla +u1)1 (_vla _u1)1 (+02= +u2)1 (_021 _uZ)

and this gives rise to a variety of value U and V matrix pairs,

[ ]
U=[+u1| —upl, V=1[+v1| —v2l
U=[-u| +ul, V=I[-v1| +v3]
U=[-u| —upl, V=I[-v1| —v] 1
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SVD Application: Data Compression

How can we actually use A = USVT? We can use this to represent A with far
fewer entries...

Notice what A = USVT looks like:

A= GlulvlT + quzvg + -+ GrurvrT + OurHvrTH + -+ Oupvg

This is easily truncated to

T T T
A = o1u10] + 02UV, + - - - + O UL,

or even more terms can be truncated for small o; (see MP3).
What are the savings?

@ A takes m x n storage T
@ using k terms of U and V takes k(1 + m + n) storage
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