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Naive Gaussian Elimination Algorithm

Forward Elimination
+ Backward substitution
= Naive Gaussian Elimination
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Goals for today. . .

Identify why our basic GE method is “naive”: identify where the errors
come from?

I division by zero, near-zero

Propose strategies to eliminate the errors
I partial pivoting, complete pivoting, scaled partial pivoting

Investigate the cost: does pivoting cost too much?
Try to answer “How accurately can we solve a system with or without
pivoting?”

I Analysis tools: norms, condition number, . . .
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Why is our basic GE “naive”?

Example

A =

0 2 3
4 5 6
7 8 9


Example

A =

1e − 10 2 3
4 5 6
7 8 9


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The Need for Pivoting

Solve:

A =


2 4 −2 −2
1 2 4 −3

−3 −3 8 −2
−1 1 6 −3

 b =


−4

5
7
7


Note that there is nothing ”wrong” with this system. A is full rank. The solution
exists and is unique.
Form the augmented system.

2 4 −2 −2
1 2 4 −3

−3 −3 8 −2
−1 1 6 −3

∣∣∣∣∣∣∣∣
−4

5
7
7


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The Need for Pivoting

Subtract 1/2 times the first row from the second row,
add 3/2 times the first row to the third row,
add 1/2 times the first row to the fourth row.
The result of these operations is:

2 4 −2 −2
0 0 5 −2
0 3 5 −5
0 3 5 −4

∣∣∣∣∣∣∣∣
−4

7
1
5


The next stage of Gaussian elimination will not work because there is a zero
in the pivot location, ã22.
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The Need for Pivoting

Swap second and fourth rows of the augmented matrix.
2 4 −2 −2
0 3 5 −4
0 3 5 −5
0 0 5 −2

∣∣∣∣∣∣∣∣
−4

5
1
7


Continue with elimination: subtract (1 times) row 2 from row 3.

2 4 −2 −2
0 3 5 −4
0 0 0 −1
0 0 5 −2

∣∣∣∣∣∣∣∣
−4

5
−4

7


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The Need for Pivoting

Another zero has appear in the pivot position. Swap row 3 and row 4.
2 4 −2 −2
0 3 5 −4
0 0 5 −2
0 0 0 −1

∣∣∣∣∣∣∣∣
−4

5
7

−4


The augmented system is now ready for backward substitution.
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another example

[
ε 1
1 1

] [
x1
x2

]
=

[
1
2

]
Example
With Naive GE, [

ε 1
0 (1 − 1

ε
)

] [
x1
x2

]
=

[
1

2 − 1
ε

]
Solving for x1 and x2 using exact arithmetic we get

x2 =
2 − 1/ε
1 − 1/ε

= 1 +
ε

ε− 1
≈ 1 − ε

x1 =
1 − x2

ε
=

−1
ε− 1

= 1 −
ε

ε− 1
≈ 1 + ε

However using finite precision floating point arithmetic for ε ≈ 10−20, x1 ≈ 0,
x2 ≈ 1. —Why?
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Pivoting Strategies

Partial Pivoting: Exchange only rows
Exchanging rows does not affect the order of the xi

For increased numerical stability, make sure the largest possible pivot
element is used. This requires searching in the partial column below the
pivot element.
Partial pivoting is usually sufficient.
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Partial Pivoting

To avoid division by zero, swap the row having the zero pivot with one of the
rows below it.

0

*

Rows completed in 
forward elimination.

Rows to search for a 
more favorable pivot 
element.

Row with zero pivot element

To minimize the effect of roundoff, always choose the row that puts the largest
pivot element on the diagonal, i.e., find ip such that |aip,i| = max(|ak,i|) for
k = i, . . . , n
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Partial Pivoting

Pivoting (that is row exchanges) can be expressed in terms of matrix
multiplication
Do pivoting during elimination, but track row exchanges in order to
express pivoting with matrix P
Let P be all zeros

I Place a 1 in column j of row 1 to exchange row 1 and row j
I If no row exchanged needed, place a 1 in column 1 of row 1
I Repeat for all rows of P

P is a permutation matrix
Now using pivoting,

LU = PA
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Partial Pivoting Example

A =


2 4 −2 −2
1 2 4 −3

−3 −3 8 −2
−1 1 6 −3

 b =


−4

5
7
7


Apply the elementary permutation matrix P1 to permute the first and third rows
of A.

P1 ∗ A =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

 ∗


2 4 −2 −2
1 2 4 −3

−3 −3 8 −2
−1 1 6 −3

 =


−3 −3 8 −2

1 2 4 −3
2 4 −2 −2

−1 1 6 −3


so we have,

P1 ∗ A ∗ x = P1 ∗ b
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Partial Pivoting Example

Next apply M1 an elementary elimination matrix to the previous result,

M1 ∗ P1 ∗ A =


1 0 0 0

1/3 1 0 0
2/3 0 1 0

−1/3 0 0 1

 ∗

−3 −3 8 −2

1 2 4 −3
2 4 −2 −2

−1 1 6 −3



=


−3 −3 8 −2

0 1 20/3 −11/3
0 2 10/3 −10/3
0 2 10/3 −7/3


so we have,

M1 ∗ P1 ∗ A ∗ x = M1 ∗ P1 ∗ b
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Partial Pivoting Example

Apply the elementary permutation matrix P2 to permute the second and third
rows.

P2 ∗M1 ∗ P1 ∗ A =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 ∗

−3 −3 8 −2

0 1 20/3 −11/3
0 2 10/3 −10/3
0 2 10/3 −7/3



=


−3 −3 8 −2

0 2 10/3 −10/3
0 1 20/3 −11/3
0 2 10/3 −7/3


so we have,

P2 ∗M1 ∗ P1 ∗ A ∗ x = P2 ∗M1 ∗ P1 ∗ b
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Partial Pivoting Example

Next apply M2 an elementary elimination matrix to the previous result,

M2 ∗ P2 ∗M1 ∗ P1 ∗ A =


1 0 0 0
0 1 0 0
0 −1/2 1 0
0 −1 0 1

 ∗

−3 −3 8 −2

0 2 10/3 −10/3
0 1 20/3 −11/3
0 2 10/3 −7/3



=


−3 −3 8 −2

0 2 10/3 −10/3
0 0 5 −2
0 0 0 1

 = U

so we have,

M2 ∗ P2 ∗M1 ∗ P1 ∗ A ∗ x = M2 ∗ P2 ∗M1 ∗ P1 ∗ b

and in this example there is no need to apply P3 then M3.
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Partial Pivoting Example

Note that we can formally write,

(M2 ∗ P2 ∗M1 ∗ P1) ∗ A = U

or
A =

(
P−1

1 ∗M−1
1 ∗ P−1

2 ∗M−1
2

)
∗U = L ′ ∗U

however the matrix L ′ = P−1
1 ∗M−1

1 ∗ P−1
2 ∗M−1

2 is

L ′ = P−1
1 ∗M−1

1 ∗ P−1
2 ∗M−1

2 =


−2/3 1 0 0
−1/3 1/2 1 0

1 0 0 0
1/3 1 0 1


and this is NOT lower triangular.
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Partial Pivoting Example
But we do note that this matrix L ′ is a permutation of a lower triangular matrix
and specifically that for

P = P2 ∗ P1 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 ∗


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

 =


0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1


then

P ∗ A = (P ∗ L ′) ∗U

=




0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

 ∗

−2/3 1 0 0
−1/3 1/2 1 0

1 0 0 0
1/3 1 0 1


 ∗U

=


1 0 0 0

−2/3 1 0 0
−1/3 1/2 1 0

1/3 1 0 1

 ∗U
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Theorem LUP decomposition
Any non-singular matrix A may be decomposed as

L ∗U = P ∗ A

where P is a permutation matrix, L is unit lower triangular, and U is upper
triangular.
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Python PLU
Consider the Python solution to the problem just considered.We get

Ax = b

PLU = A

1 >>> import numpy as np

2 >>> from scipy import linalg

3 >>> A = np.array

([[2.,4.,-2.,-2.],[1.,2.,4.,-3.],[-3.,-3.,8.,2.],[-1.,1.,6.,-3.]])

4 >>> b = np.array([[-4.],[5.],[7.],[7.]])

5 >>> P,L,U = scipy.linalg.lu(A)

6 >>> P

7 array([[ 0., 1., 0., 0.],

8 [ 0., 0., 1., 0.],

9 [ 1., 0., 0., 0.],

10 [ 0., 0., 0., 1.]])

11 >>> L

12 array([[ 1.00000000e+00, 0.00000000e+00, 0.00000000e+00,

13 0.00000000e+00],

14 [ -6.66666667e-01, 1.00000000e+00, 0.00000000e+00,

15 0.00000000e+00],

16 [ -3.33333333e-01, 5.00000000e-01, 1.00000000e+00,

17 0.00000000e+00],

18 [ 3.33333333e-01, 1.00000000e+00, 8.88178420e-17,

19 1.00000000e+00]])

20 >>> U

21 array([[-3. , -3. , 8. , 2. ],

22 [ 0. , 2. , 3.33333333, -0.66666667],

23 [ 0. , 0. , 5. , -2. ],

24 [ 0. , 0. , 0. , -3. ]])

25 >>> np.dot(P, np.dot(L,U))

26 array([[ 2., 4., -2., -2.],

27 [ 1., 2., 4., -3.],

28 [-3., -3., 8., 2.],

29 [-1., 1., 6., -3.]])

T. Gambill (UIUC) CS 357 July 8, 2014 20 / 55



Partial Pivoting: Usually sufficient, but not always

Partial pivoting is usually sufficient
Consider [

2 2c
1 1

∣∣∣∣ 2c
2

]
With Partial Pivoting, the first row is the pivot row:[

2 2c
0 1 − c

∣∣∣∣ 2c
2 − c

]
and for large c: [

2 2c
0 −c

∣∣∣∣ 2c
−c

]
so that x = 0 and y = 1. (exact is x = y = 1 for finite precision floating
point arithmetic)
The pivot is selected as the largest in the column, but it should be the
largest relative to the full submatrix.
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More Pivoting Strategies

Full (or Complete) Pivoting: Exchange both rows and columns
Column exchange requires changing the order of the xi

For increased numerical stability, make sure the largest possible pivot
element is used. This requires searching in the pivot row, and in all rows
below the pivot row, starting the pivot column.
Full pivoting is less susceptible to roundoff, but the increase in stability
comes at a cost of more complex programming (not a problem if you use
a library routine) and an increase in work associated with searching and
data movement.
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Full Pivoting

0

*

Rows completed in 
forward elimination.

Columns to search for a more 
favorable pivot element.

Row with zero pivot element

Rows to search for a 
more favorable pivot 
element.

*
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Full Pivoting

For the matrix (assuming |c| >> 1),[
2 2c
1 1

∣∣∣∣ 2c
2

]
swap the first and second columns to obtain,[

2c 2
1 1

∣∣∣∣ 2c
2

]
and now apply GE, [

2c 2
0 1 − 1

c

∣∣∣∣ 2c
1

]
and for large c: [

2c 2
0 1

∣∣∣∣ 2c
1

]
so that x = 1 and y = 1. (exact is x = y = 1)
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Theorem LU Decomposition Using Full Pivoting
Any non-singular matrix A may be decomposed as

L ∗U = P ∗ A ∗Q

where P and Q are permutation matrices, L is unit lower triangular, and U is
upper triangular.
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Application of LU Decomposition — Matrix Inverse
Given a nonsingular matrix A we can find A−1 by solving,

A ∗ x = ei i = 1, . . . , n

where the identity matrix In×n is written in column form as,

I = [e1|e2| . . . |en]

This we are solving,

Ax1 = e1

Ax2 = e2

...
Axn = en

and the inverse matrix is therefore (in column format),
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Application of LU Decomposition — Matrix Inverse

A−1 = [x1|x2| . . . xn]

Since LU factorization costs O( 2
3 n3) (assuming no pivoting) and for the n

equations back-solving/forward-solving costs O( 4
3 n3) (see pp. 224-225 for

details) thus the total cost is O(2n3).
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Application of LU Decomposition — Determinant
Given a matrix A we can perform a factorization,

P ∗ A = L ∗U thus
det(P) ∗ det(A) = det(L) ∗ det(U)

(−1)s ∗ det(A) = 1 ∗
n∏

i=1

Ui,i

where P is a permutation matrix and thus

det(P) =

{
−1 if the number of elementary permutations is odd
+1 if the number of elementary permutations is even

L is unit lower triangular and thus,

det(L) = 1

and U is upper triangular so

det(U) = the product of the diagonal elements of U
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Application of LU Decomposition — Determinant
Given a matrix A = P ∗ L ∗U,

1 >>> A = np.array

([[2.,4.,-2.,-2.],[1.,2.,4.,-3.],[-3.,-3.,8.,2.],[-1.,1.,6.,-3]])

2 >>> A

3 array([[ 2., 4., -2., -2.],

4 [ 1., 2., 4., -3.],

5 [-3., -3., 8., 2.],

6 [-1., 1., 6., -3.]])

7 >>> P,L,U = linalg.lu(A)

8 >>> P

9 array([[ 0., 1., 0., 0.],

10 [ 0., 0., 1., 0.],

11 [ 1., 0., 0., 0.],

12 [ 0., 0., 0., 1.]])

13 >>> L

14 array([[ 1.00000000e+00, 0.00000000e+00, 0.00000000e+00,

15 0.00000000e+00],

16 [ -6.66666667e-01, 1.00000000e+00, 0.00000000e+00,

17 0.00000000e+00],

18 [ -3.33333333e-01, 5.00000000e-01, 1.00000000e+00,

19 0.00000000e+00],

20 [ 3.33333333e-01, 1.00000000e+00, 8.88178420e-17,

21 1.00000000e+00]])

22 >>> U

23 array([[-3. , -3. , 8. , 2. ],

24 [ 0. , 2. , 3.33333333, -0.66666667],

25 [ 0. , 0. , 5. , -2. ],

26 [ 0. , 0. , 0. , -3. ]])

27 >>> linalg.det(A)

28 90.0

where P is a permutation matrix and thus

det(P) = 1( product of even number of elementary permutations)

L is unit lower triangular and thus,

det(L) = 1

and U is upper triangular so

det(U) = −3.0 ∗ 2.0 ∗ 5.0 ∗−3.0 = 90.0
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Geometric Interpretation of Singularity

Consider a 2× 2 system describing two lines that intersect

y = −2x + 6

y =
1
2

x + 1

The matrix form of this equation is[
2 1

−1/2 1

] [
x1
x2

]
=

[
6
1

]
The equations for two parallel but not intersecting lines are[

2 1
2 1

] [
x1
x2

]
=

[
6
5

]
Here the coefficient matrix is singular (rank(A) = 1), and the system is
inconsistent
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Geometric Interpretation of Singularity

The equations for two parallel and coincident lines are[
2 1
2 1

] [
x1
x2

]
=

[
6
6

]
The equations for two nearly parallel lines are[

2 1
2 + δ 1

] [
x1
x2

]
=

[
6

6 + δ

]
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Geometric Interpretation of Singularity

0 1 2 3 4

0

2

4

6

8
A and b are consistent
A is nonsingular

0 1 2 3 4

0

2

4

6

8
A and b are inconsistent

A is singular

0 1 2 3 4

0

2

4

6

8
A and b are consistent
A is singular

0 1 2 3 4

0

2

4

6

8
A and b are consistent
A is ill conditioned
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Effect of Perturbations to b

Consider the solution of a 2× 2 system where

b =

[
1

2/3

]
One expects that the exact solutions to

Ax =

[
1

2/3

]
and Ax =

[
1

0.6667

]
will be different. Should these solutions be a lot different or a little different?

T. Gambill (UIUC) CS 357 July 8, 2014 33 / 55



Norms
Vectors:

‖x‖p =
(
|x1|

p + |x2|
p + . . . + |xn|

p)1/p

‖x‖1 = |x1|+ |x2|+ . . . + |xn| =

n∑
i=1

|xi|

‖x‖∞ = max (|x1|, |x2|, . . . , |xn|) = max
i

(|xi|)

Matrices:

‖A‖ = max
x,0

‖Ax‖
‖x‖

= max
‖u‖=1

‖Au‖

‖A‖p = max
x,0

‖Ax‖p

‖x‖p

‖A‖1 = max
16j6n

m∑
i=1

|aij|

‖A‖∞ = max
16i6m

n∑
j=1

|aij|
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Properties of Vector Norms
Every vector norm must satisfy the following properties.

‖x‖ > 0 for x , 0 (where 0 is the zero vector)
‖αx‖ = |α|‖x‖ for any scalar α ∈ R

‖x + y‖ 6 ‖x‖+ ‖y‖ triangle inequality

The vector norm ‖x‖p for p > 1, defined on the previous slide, satisfy the
following properties.

‖x‖q 6 ‖x‖p for 1 6 p 6 q 6 +∞
and

‖x‖1 6
√

n‖x‖2

‖x‖2 6
√

n‖x‖∞
‖x‖1 6 n‖x‖∞
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Properties of Matrix Norms
Every matrix norm must satisfy the following properties.

‖A‖ > 0 for A , 0 (where 0 is the zero matrix)
‖αA‖ = |α|‖A‖ for any scalar α ∈ R

‖A + B‖ 6 ‖A‖+ ‖B‖ triangle inequality

A Matrix norm created from a vector norm by the formula,

‖A‖ = max
x,0

‖Ax‖
‖x‖

is called an induced matrix norm. Induced matrix norms satisfy the following
properties.

‖Ax‖ 6 ‖A‖‖x‖
‖AB‖ 6 ‖A‖‖B‖
‖I‖ = 1 where I is the identity matrix
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Effect of Perturbations to b

Perturb b with δb such that

‖(b + δb) − b‖
‖b‖

=
‖δb‖
‖b‖

� 1,

The perturbed system is
A(x + δxb) = b + δb

Analysis shows (see next two slides for proof) that

‖δxb‖
‖x‖

6 ‖A‖‖A−1‖‖δb‖
‖b‖

(1)

Thus, the effect of the perturbation is small only if ‖A‖‖A−1‖ is small.

‖δxb‖
‖x‖

� 1 only if ‖A‖‖A−1‖ ∼ 1

T. Gambill (UIUC) CS 357 July 8, 2014 37 / 55



Effect of Perturbations to b (Proof)

Let x + δxb be the exact solution to the perturbed system

A(x + δxb) = b + δb (2)

Expand
Ax + Aδxb = b + δb

Subtract Ax from left side and b from right side since Ax = b

Aδxb = δb

Left multiply by A−1

δxb = A−1δb (3)
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Effect of Perturbations to b (Proof, p. 2)

Take norm of equation (3)
‖δxb‖ = ‖A−1 δb‖

Applying consistency requirement of matrix norms

‖δxb‖ 6 ‖A−1‖‖δb‖ (4)

Similarly, Ax = b gives ‖b‖ = ‖Ax‖, and

‖b‖ 6 ‖A‖‖x‖ (5)

Rearrangement of equation (5) yields

1
‖x‖

6
‖A‖
‖b‖

(6)
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Effect of Perturbations to b (Proof)

Multiply Equation (5) by Equation (4) to get

‖δxb‖
‖x‖

6 ‖A‖‖A−1‖‖δb‖
‖b‖

(7)

Summary:

If x + δxb is the exact solution to the perturbed system

A(x + δxb) = b + δb

then
‖δxb‖
‖x‖

6 ‖A‖‖A−1‖‖δb‖
‖b‖

T. Gambill (UIUC) CS 357 July 8, 2014 40 / 55



Condition Number of Matrix

Definition
The condition number of a matrix A is defined by κ(A) = ||A|| ∗ ||A−1||

Remember our definition of condition number of a problem from lecture 3,
how is this related?

Relative Condition Number in higher dimensions
Given a function G : Rn → Rn,suppose we wish to compute y = G(x). How
sensitive is the solution to changes in x? We can measure this sensitivity by:

Relative Condition Number = lim||h||→0

||G(x+h)−G(x)||
||G(x)||

||h||
||x||

The Taylor Series for G is,

G(x + h) = G(x) + G ′(x) ∗ h + ...

where G ′(x) is the Jacobian. Thus, we get,
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Condition Number of Matrix

Relative Condition Number = lim
||h||→0

||G(x + h) − G(x)|| ||x||
||h|| ||G(x)||

=
||G ′(x)|| ||x||
||G(x)||

Our problem is to compute x = A−1 ∗ b (G is A−1, x in G(x) is b and the y in
y = G(x) is x in this analysis). Since the Jacobian of G(x) = A−1b is A−1 we
can substitute into the above formula to get,

Relative Condition Number =
||A−1|| ||b||

||x||

But we have
||Ax|| 6 ||A|| ||x||

or
||b||
||x||

6 ||A||

and after substitution we have,

Relative Condition Number =
||A−1|| ||b||

||x||
6 ||A−1|| ||A|| = κ(A)
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Effect of Perturbations to A

Perturb A with δA such that

‖(A + δA) − A‖
‖A‖

=
‖δA‖
‖A‖

� 1,

The perturbed system is

(A + δA)(x + δxA) = b

Analysis shows that
‖δxA‖
‖x + δxA‖

6 ‖A‖‖A−1‖‖δA‖
‖A‖

Thus, the effect of the perturbation is small only if ‖A‖‖A−1‖ is small.

‖δxA‖
‖x + δxA‖

� 1 only if ‖A‖‖A−1‖ ∼ 1
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Effect of Perturbations to both A and b
Perturb both A with δA and b with δb such that

‖δA‖
‖A‖

� 1 and
‖δb‖
‖b‖

� 1

The perturbation satisfies

(A + δA)(x + δx) = b + δb

Analysis shows that

‖δx‖
‖x‖

6
‖A‖‖A−1‖

1 − ‖A‖‖A−1‖‖δA‖
‖A‖

[
‖δA‖
‖A‖

+
‖δb‖
‖b‖

]

Thus, the effect of the perturbation is small only if ‖A‖‖A−1‖ is small.

‖δx‖
‖x‖

� 1 only if ‖A‖‖A−1‖ ∼ 1
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Condition number of A

The condition number
κ(A) ≡ ‖A‖‖A−1‖

indicates the sensitivity of the solution to perturbations in A and b. The
condition number can be measured with any p-norm.
The condition number is always in the range

1 6 κ(A) 6∞
κ(A) is a mathematical property of A
Any algorithm will produce a solution that is sensitive to
perturbations in A and b if κ(A) is large.
In exact math a matrix is either singular or non-singular.
κ(A) =∞ for a singular matrix
κ(A) indicates how close A is to being numerically singular.
A matrix with large κ is said to be ill-conditioned
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Condition number of A Geometric view
Note that if we denote y = A−1x so that Ay = x we can write,

‖A−1‖ = max
x,0

‖A−1x‖
‖x‖

= max
y,0

‖y‖
‖Ay‖

= max
y,0

1
‖Ay‖
‖y‖

=
1

miny,0
‖Ay‖
‖y‖

so

κ(A) =
maxx,0

‖Ax‖
‖x‖

miny,0
‖Ay‖
‖y‖

and thus the condition number κ measures the ratio of the largest stretching
to smallest stretching of any non-zero vector by the matrix.

T. Gambill (UIUC) CS 357 July 8, 2014 46 / 55



The Residual

Let x̂ be the numerical solution to Ax = b. x̂ , x (x is the exact solution)
because of roundoff.
The residual measures how close x̂ is to satisfying the original equation

r = b − Ax̂

It is not hard to show from equation (1) that

‖x̂ − x‖
‖x‖

6 κ(A)
‖r‖
‖b‖

Small ‖r‖ does not guarantee a small ‖x̂ − x‖.
If κ(A) is large the x̂ returned by Gaussian elimination and back substitution
(or any other solution method) is not guaranteed to be anywhere near the true
solution to Ax = b.
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Computational Stability

In Practice, applying Gaussian elimination with partial pivoting and back
substitution to Ax = b gives the exact solution, x̂, to the nearby problem(see
INC p. 239)

(A + δA)x̂ = b where ‖δA‖∞ . εm

2
‖A‖∞

Gaussian elimination with partial pivoting and back substitution
“gives exactly the right answer to nearly the right question.”

— Trefethen and Bau
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Computational Stability

An algorithm that gives the exact answer to a problem that is near to the
original problem is said to be backward stable. Algorithms that are not
backward stable will tend to amplify roundoff errors present in the original
data. As a result, the solution produced by an algorithm that is not backward
stable will not necessarily be the solution to a problem that is close to the
original problem.
Gaussian elimination without partial pivoting is not backward stable for
arbitrary A.
If A is symmetric and positive definite, then Gaussian elimination without
pivoting in backward stable.
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For a fixed vector b and for different matrices A the exact solution of Ax = b
can be written as x = A−1b. With finite precision arithmetic the solution is x̂.
The matrix A + δA produces the solution of (A + δA)x̂ = b with exact
arithmetic.

-

-

@
@
@
@
@
@
@R

exact
A x = A−1b

exactA+δA x̂ = (A+δA)−1b
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Rules of Thumb
From

(A + δA)x̂ = b where ‖δA‖∞ . εm

2
‖A‖∞

and the definition of the residual,

r = b − Ax̂

we can derive the following approximation,

||x̂ − x||∞
||x||∞ .

εm

2
κ(A)

Applying Gaussian elimination with partial pivoting and back substitution
to Ax = b yields a numerical solution x̂ such that the residual vector
r = b − Ax̂ is small even if the κ(A) is large.
If A and b are stored to machine precision εm, the numerical solution to
Ax = b by any variant of Gaussian elimination is correct to d digits where

d = | log10(εm)|− log10 (κ(A))

T. Gambill (UIUC) CS 357 July 8, 2014 51 / 55



Rules of Thumb

d = | log10(εm)|− log10 (κ(A))

Example:
Python computations have εm ≈ 2.2× 10−16. For a system with κ(A) ∼ 1010 the
elements of the solution vector will have

d = | log10(2.2× 10−16)|− log10

(
1010)

≈ 16 − 10
≈ 6

correct (decimal) digits
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Summary of Limits to Numerical Solution of Ax = b

1 κ(A) indicates how close A is to being numerically singular
2 If κ(A) is “large”, A is ill-conditioned and even the best numerical

algorithms will produce a solution, x̂ that cannot be guaranteed to be
close to the true solution, x

3 In practice, Gaussian elimination with partial pivoting and back
substitution produces a solution with a small residual

r = b − Ax̂

even if κ(A) is large.
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The Backslash Operator

Consider the scalar equation

5x = 20 =⇒ x = (5)−120

The extension to a system of equations is, of course

Ax = b =⇒ x = A−1b

where A−1b is the formal solution to Ax = b
In MATLAB notation the system is solved with

1 x = A\b
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The Backslash Operator

Given an n× n matrix A, and an n× 1 vector b the \ operator performs a
sequence of tests on the A matrix. MATLAB attempts to solve the system with
the method that gives the least roundoff and the fewest operations.
When A is an n× n matrix:

1 MATLAB examines A to see if it is a permutation of a triangular system
If so, the appropriate triangular solve is used.

2 MATLAB examines A to see if it appears to be symmetric and positive
definite.

If so, MATLAB attempts a Cholesky factorization
and two triangular solves.

3 If the Cholesky factorization fails, or if A does not appear to be
symmetric,

MATLAB attempts an LU factorization
and two triangular solves.

T. Gambill (UIUC) CS 357 July 8, 2014 55 / 55


